连续纤维增强碳化硅陶瓷基复合材料低成本制备工艺研究进展

商剑钊, 吴小飞, 曹晔洁, 吕云蕾, 李精鑫, 王晶, 董宁, 刘永胜

PDF(1611 KB)
PDF(1611 KB)
材料工程 ›› 2025, Vol. 53 ›› Issue (1) : 15-27. DOI: 10.11868/j.issn.1001-4381.2024.000520
综述

连续纤维增强碳化硅陶瓷基复合材料低成本制备工艺研究进展

作者信息 +

Research progress in low-cost preparation process of continuous fiber-reinforced silicon carbide ceramic matrix composites

Author information +
History +

摘要

连续纤维增强陶瓷基复合材料具有低密度、高强度、耐高温等优异性能,已被广泛应用于航空航天、国防军工和新兴民用等领域,但连续纤维增强陶瓷基复合材料制备工艺大多存在成本较高、周期过长等问题,限制其应用和推广,发展低成本制备工艺是推动连续纤维增强陶瓷基复合材料广泛应用的关键。本文简要介绍了连续纤维增强陶瓷基复合材料制备工艺现状,总结了反应熔渗、纳米浆料浸渗瞬时共晶、浆料浸渗结合热压等低成本工艺的研究现状,围绕制备工艺优化、复合材料微观结构和性能等方面进行综述,提出了低成本制备工艺的未来研究方向,如熔盐法制备超高温陶瓷界面和反应诱导相分离制备具有孔隙结构均匀的多孔基体,可显著提升连续纤维增强陶瓷基复合材料的综合性能。

Abstract

Continuous fiber-reinforced ceramic matrix composites have been widely used in aerospace, defense industry, emerging civilian,and other fields due to their excellent properties such as low density, high strength and high temperature resistance. However, most of the preparation processes of continuous fiber-reinforced ceramic matrix composites have problems such as high cost and long cycles, which limit the application and promotion of ceramic matrix composites. The development of a low-cost preparation process is the key to promoting the wide application of continuous fiber-reinforced ceramic matrix composites. In this paper, the preparation process of continuous fiber-reinforced ceramic matrix composites is briefly introduced, and the research status of low-cost processes such as reactive melt infiltration, nano infiltration and transient eutectoid, and slurry infiltration and hot pressing is summarized. The optimization of preparation process, microstructure and properties of composites is reviewed, and the future research direction of the low-cost preparation process is proposed, such as the preparation of ultra-high temperature ceramic interface by molten salt method and the preparation of porous matrix with uniform pore structure by reaction-induced phase separation, which can significantly improve the comprehensive properties of continuous fiber-reinforced ceramic matrix composites.

关键词

连续纤维增强陶瓷基复合材料 / 制备工艺 / 低成本 / 反应熔渗 / 纳米浆料浸渗瞬时共晶

Key words

continuous fiber-reinforced ceramic matrix composites / preparation process / low-cost / reactive melt infiltration / nano infiltration and transient eutectoid

中图分类号

TB332

引用本文

导出引用
商剑钊 , 吴小飞 , 曹晔洁 , . 连续纤维增强碳化硅陶瓷基复合材料低成本制备工艺研究进展. 材料工程. 2025, 53(1): 15-27 https://doi.org/10.11868/j.issn.1001-4381.2024.000520
Jianzhao SHANG, Xiaofei WU, Yejie CAO, et al. Research progress in low-cost preparation process of continuous fiber-reinforced silicon carbide ceramic matrix composites[J]. Journal of Materials Engineering. 2025, 53(1): 15-27 https://doi.org/10.11868/j.issn.1001-4381.2024.000520

参考文献

[1]
张立同,成来飞 .连续纤维增韧陶瓷基复合材料可持续发展战略探讨[J]. 复合材料学报200724(2):1-6.
ZHANG L T CHENG L F. Discussion on strategies of sustainable development of continuous fiber reinforced ceramic matrix composites[J]. Acta Materiae Compositae Sinica200724(2):1-6.
[2]
陈玉峰,洪长青,胡成龙,等 .空天飞行器用热防护陶瓷材料[J]. 现代技术陶瓷201738(5):311-390.
CHEN Y F HONG C Q HU C L, et al. Ceramic-based thermal protection materials for aerospace vehicles[J]. Advanced Ceramics201738(5):311-390.
[3]
KRENKEL W BERNDT F. C/C-SiC composites for space applications and advanced friction systems[J]. Materials Science and Engineering: A2005412(1):177-181.
[4]
YIN X W CHENG L F ZHANG L T, et al. Fibre-reinforced multifunctional SiC matrix composite materials[J]. International Materials Reviews201762(3):117-172.
[5]
张玉娣,张长瑞,周新贵,等 .SiC基陶瓷卫星反射镜研究进展[J]. 材料导报200216(9):37-39.
ZHANG Y D ZHANG C R ZHOU X G, et al. Development of SiC matrix ceramic satellite mirror[J]. Materials Reports200216(9):37-39.
[6]
张立同,成来飞,徐永东 .新型碳化硅陶瓷基复合材料的研究进展[J]. 航空制造技术2003(1):24-32.
ZHANG L T CHENG L F XU Y D. Progress in research work of new CMC-SiC[J]. Aeronautical Manufacturing Technology2003(1):24-32.
[7]
王衍飞,刘荣军,张金,等.SiCf/SiC陶瓷基复合材料制备技术研究进展[J].材料工程1-46[2024-12-25].
WANG Y F LIU R J ZHANG J,et al.Research progress in preparation technology of SiCf/SiC ceramic matrix composites[J].Journal of Materials Engineering1-46[2024-12-25].
[8]
YUTARO A, RYO I, KEN G, et al. Carbon fiber reinforced ultra-high temperature ceramic matrix composites: a review[J]. Ceramics International201945(12):14481-14489.
[9]
周渭良,邬国平,谢方民,等 .LSI低成本制备Cf/SiC复合材料工艺研究[J]. 兵器材料科学与工程201235(2):58-60.
ZHOU W L WU G P XIE F M, et al. Loe-cost preparation process of Cf/C-SiC composites by LSI[J]. Ordnance Material Science and Engineering201235(2):58-60.
[10]
HUAND D ZHANG M Y HUANG Q Z, et al. Mechanical property, oxidation and ablation resistance of C/C-ZrB2-ZrC-SiC composite fabricated by polymer infiltration and pyrolysis with preform of Cf/ZrB2 [J]. Journal of Materials Science & Technology201733(5):481-486.
[11]
解齐颖,张祎,朱阳,等.超高温陶瓷改性碳/碳复合材料[J].材料工程202149(7):46-55.
XIE Q Y ZHANG Y ZHU Y,et al.Ultra-high temperature ceramics modified carbon/carbon composites[J].Journal of Materials Engineering202149(7):46-55.
[12]
ZHONG H WANG Z ZHOU H J, et al. Properties and microstructure evolution of Cf/SiC composites fabricated by polymer impregnation and pyrolysis (PIP) with liquid polycarbosilane[J]. Ceramics International201743(10):7387-7392.
[13]
LI H B ZHANG L T CHENG L F, et al. Fabrication of 2D C/ZrC-SiC composite and its structural evolution under high-temperature treatment up to 1800 ℃[J]. Ceramics International200935(7):2831-2836.
[14]
DUAN L Y ZHAO X WANG Y G. Comparative ablation behaviors of C/SiC-HfC composites prepared by reactive melt infiltration and precursor infiltration and pyrolysis routes[J]. Ceramics International201743(18):16114-16120.
[15]
余娟丽,王涛,吕毅,等 .PIP法制备SiBN纤维增强氮化物陶瓷基复合材料Ⅰ——纤维和先驱体性能分析[J]. 宇航材料工艺201545(3):19-23.
YU J L WANG T LV Y, et al. Continuous SiBN fiber reinforced nitride ceramic matrix composites fabricated by PIP Ⅰ-performance analysis of precursor and fibers[J]. Aerospace Materials & Technology201545(3):19-23.
[16]
TANG S F HU C L. Design, preparation and properties of carbon fiber reinforced ultra-high temperature ceramic composites for aerospace applications: a review[J]. Journal of Materials Science & Technology201733(2):117-130.
[17]
李国明,刘辉,迟伟东,等 .溶胶-凝胶法制备Zr-C/C复合材料及其烧蚀性能[J]. 宇航材料工艺201040(5):60-64.
LI G M LIU H CHI W D, et al. Preparation of Zr-containing C/C composites by means of sol-gel method and its ablation properties[J]. Aerospace Materials & Technology201040(5):60-64.
[18]
王群,王文忠,高钦,等 .Lanxide技术合成AlN材料的反应过程及组织特征[J]. 无机材料学报199712(1):105-109.
WANG Q WANG W Z GAO Q, et al. Reaction process and characteristics of microstructure of AlN composite synthesized by lanxide method[J]. Journal of Inorganic Materials199712(1):105-109.
[19]
WILSHIRE B CARRENO F. Deformation and damage processes during tensile creep of ceramic-fibre-reinforced ceramic-matrix composites[J]. Journal of the European Ceramic Society200020(4):463-472.
[20]
WANG P R LIU F Q WANG H, et al. A review of third generation SiC fibers and SiCf/SiC composites[J]. Journal of Materials Science & Technology201935(12):2743-2750.
[21]
KOHYAMA A. Advanced SiC/SiC composite materials for fourth generation gas cooled fast reactors[J]. Key Engineering Materials2005287:16-21.
[22]
KATOH Y DONG S M KOHYAMA A. Thermo-mechanical properties and microstructure of silicon carbide composites fabricated by nano-infiltrated transient eutectoid process[J]. Fusion Engineering and Design200261:723-731.
[23]
VINCI A ZOLI L LANDI E, et al. Oxidation behaviour of a continuous carbon fibre reinforced ZrB2-SiC composite[J]. Corrosion Science2017123:129-138.
[24]
KIM C GRUMMON D S. Processing and interface characteristics of graphite fiber reinforced tantalum carbide matrix composites [J]. Scripta Materialia199125(10):2351-2356.
[25]
XIAO K S GUO Q G LIU Z J, et al. Influence of fiber coating thickness on microstructure and mechanical properties of carbon fiber-reinforced zirconium diboride based composites[J]. Ceramics International201440(1):1539-1544.
[26]
VINCI A ZOLI L SCITI D, et al. Mechanical behaviour of carbon fibre reinforced TaC/SiC and ZrC/SiC composites up to 2100 ℃[J]. Journal of the European Ceramic Society201939(4):780-787.
[27]
石林,闫联生,张强,等 .碳纤维増强超高温陶瓷基复合材料的研究进展[J]. 炭素2021(1):36-42.
SHI L YAN L S ZHANG Q, et al. Research progress on carbon fiber reinforced ultra-high temperature ceramic matrix composites[J]. Carbon2021(1):36-42.
[28]
LI Q G DONG S M WANG Z, et al. Fabrication of a ZrC-SiC matrix for ceramic matrix composites via in-situ reaction and its application[J]. Ceramics International201339(1):877-881.
[29]
SHEN X T LIU L LI W, et al. Ablation behaviour of C/C-ZrC composites in a solid rocket motor environment[J]. Ceramics International201541(9):11793-11803.
[30]
仝永刚 .Si-Zr二元系合金反应熔渗改性C/C复合材料及其性能研究[D].长沙:国防科学技术大学,2015.
TONG Y G. Preparation and properties of modified C/C composite by Si-Zr alloyed melt infiltration[D]. Changsha: National University of Defense Technology, 2015.
[31]
LIU L ZHANG L L FENG W, et al. Microstructure and properties of C/C-SiC composites prepared by reactive melt infiltration at low temperature in vacuum[J]. Ceramics International202046(6):8469-8472.
[32]
GAO Y Q LIU Y S WANG J, et al. Formation mechanism of Si-Y-C ceramic matrix by reactive melt infiltration using Si-Y alloy and properties of C/Si-Y-C composites[J]. Ceramics International202046(11):18976-18984.
[33]
严春雷,刘荣军,张长瑞,等 .气相渗硅制备C/SiC复合材料[J]. 航空制造技术2014(6):66-71.
YAN C L LIU R J ZAHNG C R, et al. Preparation of C/SiC composites by gaseous Si infiltration[J]. Aeronautical Manufacturing Technology2014(6):66-71.
[34]
WANG Y G ZHU X J ZHANG L T, et al. C/C-SiC-ZrC composites fabricated by reactive melt infiltration with Si0.87Zr0.13 alloy[J]. Ceramics International201238(5):4337-4343.
[35]
ZHU Y L WANG S CHEN H M, et al. Fabrication and characterization of 3-D Cf/ZrC composites by low-temperature liquid metal infiltration[J]. Composites Part B201456:756-761.
[36]
KUTEMEYER M SCHOMER L HELMREICH T, et al. Fabrication of ultra high temperature ceramic matrix composites using a reactive melt infiltration process[J]. Journal of the European Ceramic Society201636(15):3647-3655.
[37]
ZENG Y XIONG X WANG D N, et al. Infiltration mechanism and factors influencing carbon/carbon-Zr-Ti-C composites prepared by liquid metal infiltration[J]. Journal of Materials Processing Technology2014214(12):3150-3157.
[38]
张莹,王雅雷,叶志勇,等 .低温反应熔渗制备C/C-SiC复合材料的微观结构和力学性能[J]. 应用技术学报201818(4):317-323.
ZHANG Y WANG Y L YE Z Y, et al. Microstructure and mechanical properties of C/C-SiC materials fabricated by low-temperature reactive melt infiltration[J]. Journal of Technology201818(4):317-323.
[39]
WANG D WANG Y J RAO J C, et al. Influence of reactive melt infiltration parameters on microstructure and properties of low temperature derived Cf/ZrC composites[J]. Materials Science and Engineering: A2013568:25-32.
[40]
FAN X M DANG X L MA Y Z, et al. Microstructure, mechanical and ablation behaviour of C/SiC-Si with different preforms[J]. Ceramics International201945(17):23104-23110.
[41]
倪德伟,陈小武,王敬晓,等 .Cf/ZrB2-ZrC-SiC超高温陶瓷基复合材料的设计、制备及性能[J]. 硅酸盐学报201846(12):1661-1668.
NI D W CHEN X W WANG J X, et al. Design, fabrication and properties of Cf/ZrB2-ZrC-SiC ultra-high temperature ceramic matrix composites[J]. Journal of the Chinese Ceramic Society201846(12):1661-1668.
[42]
CHEN X W FENG Q KAN Y M, et al. Effects of preform pore structure on infiltration kinetics and microstructure evolution of RMI-derived Cf/ZrC-ZrB2-SiC composite[J]. Journal of the European Ceramic Society202040(7):2683-2690.
[43]
CHEN X W DONG S M KAN Y M, et al. 3D Cf/SiC-ZrC-ZrB2 composites fabricated via sol-gel process combined with reactive melt infiltration[J]. Journal of the European Ceramic Society201636(15):3607-3613.
[44]
CHEN X W DONG S M KAN Y M, et al. Microstructure and mechanical properties of three dimensional Cf/SiC-ZrC-ZrB2 composites prepared by reactive melt infiltration method[J]. Journal of the European Ceramic Society201636(16):3969-3976.
[45]
YANG X SU Z HUANG Q Z, et al. Microstructure and mechanical properties of C/C-ZrC-SiC composites fabricated by reactive melt infiltration with Zr, Si mixed powders[J]. Journal of Materials Science & Technology201329(8):702-710.
[46]
HE Z J LI C QI J L, et al. Pre-infiltration and brazing behaviors of Cf/C composites with high temperature Ti-Si eutectic alloy[J]. Carbon2018140:57-67.
[47]
SINGH M BEHRENDT D R. Reactive melt infiltration of silicon-molybdenum alloys into microporous carbon preforms[J]. Materials Science and Engineering: A1995194(2):193-200.
[48]
AOKI T OGASAWARA T OKUBO Y, et al. Fabrication and properties of Si-Hf alloy melt-infiltrated Tyranno ZMI fiber/SiC-based matrix composites[J]. Composites Part A201466:155-162.
[49]
SINGH M BEHRENDT D R. Reactive melt infiltration of silicon-niobium alloys in microporous carbons[J]. Journal of materials research19949(7):1701-1708.
[50]
LI Z Q LI H J ZHANG S Y, et al. Effect of reaction melt infiltration temperature on the ablation properties of 2D C/C-SiC-ZrC composites[J]. Corrosion Science201258:12-19.
[51]
YIN X W HE S S ZHANG L T, et al. Fabrication and characterization of a carbon fibre reinforced carbon-silicon carbide-titanium silicon carbide hybrid matrix composite[J]. Materials Science and Engineering: A2010527(3):835-841.
[52]
冉丽萍,易茂中,王朝胜,等 .添加Al对MSI制备C/C-SiC复合材料组织和力学性能的影响[J]. 复合材料学报200623(5):34-38.
RAN L P YI M Z WANG C S, et al. Influence of adding Al on the microstructure and mechanical properties of C/C-SiC composites fabricated by MSI[J]. Acta Materiae Compositae Sinica200623(5):34-38.
[53]
FAN S W NING Y F MA X, et al. Microstructure and mechanical properties of Fe-Si alloy modified C/C-SiC composites[J]. Ceramics International201945(17):21579-21589.
[54]
FAN S W DU Y HE L Y, et al. Microstructure and properties of α-FeSi2 modified C/C-SiC brake composites[J]. Tribology International2016102:10-18.
[55]
徐永龙 .C/C-Zr-Hf-Si复合材料的熔盐辅助反应熔渗制备技术研究[D].长沙:中南大学, 2022.
XU Y L. Fabrication of C/C-Zr-Hf-Si composites via molten-salt-assisted reactive melt infiltration[D]. Changsha: Central South University, 2022.
[56]
XU Y L SUN W XIONG X, et al. Chloride salt assisted reactive molten infiltration method for Cf-UHTCs and their unique microstructure[J]. Ceramics International202046(5):6424-6435.
[57]
KONDO M NAGASAKA T XU Q, et al. Corrosion characteristics of reduced activation ferritic steel, JLF-1 (8.92Cr-2W) in molten salts Flibe and Flinak[J]. Fusion Engineering and Design200984(7):1081-1085.
[58]
KEISER J R DEVAN J H LAWRENCE E J. Compatibility of molten salts with type 316 stainless steel and lithium[J]. Journal of Nuclear Materials197985:295-298.
[59]
XU Y L SUN W MIAO C M, et al. Ablation properties of C/C-UHTCs and their preparation by reactive infiltration of K2MeF6 (Me = Zr, Ti) molten salt[J]. Journal of the European Ceramic Society202141(11):5405-5416.
[60]
SHEN Y Z SUN W XU Y L, et al. Structural characteristics and ablative behavior of YF3 modified C/C-ZrC-SiC composites and their preparation by molten salt assisted reactive melt infiltration[J]. Journal of the European Ceramic Society202343(4):1303-1314.
[61]
冯志海,刘宇峰,张中伟,等 .一种基于熔融渗硅工艺的复合材料、碳/碳多孔体及其制备方法:CN201810699996.8 [P].2018-11-13.
FENG Z H LIU Y F ZHANG Z W, et al. Preparing a carbon/carbon porous body used for preparing a composite material based on fused silicon infiltration technique: CN201810699996.8[P]. 2018-11-13.
[62]
DONG S M KATOH Y T KOHYAMA A. Processing optimization and mechanical evaluation of hot pressed 2D Tyranno-SA/SiC composites[J]. Journal of the European Ceramic Society200323(8):1223-1231.
[63]
DONG S M KATOH Y T KOHYAMA A. Preparation of SiC/SiC composites by hot pressing, using Tyranno‐SA fiber as reinforcement[J]. Journal of the American Ceramic Society200386(1):26-32.
[64]
SHIMODA K HINOKI T KATOH Y, et al. Development of the tailored SiC/SiC composites by the combined fabrication process of ICVI and NITE methods[J]. Journal of Nuclear Materials2009384(2):103-108.
[65]
KOHYAMA A KOHNO Y KISHIMOTO H, et al. Industrialization of advanced SiC/SiC composites and SiC based composites; intensive activities at Muroran Institute of Technology under OASIS[C]∥3rd International Congress on Ceramics.Osaka,Japan:ICC,2011:202002.
[66]
NOZAWA T OZAWA K ASAKURA Y, et al. Evaluation of damage accumulation behavior and strength anisotropy of NITE SiC/SiC composites by acoustic emission, digital image correlation and electrical resistivity monitoring[J]. Journal of Nuclear Materials2014455(1):549-553.
[67]
HINO T HAYASHISHITA E YAMAUCHI Y, et al. Helium gas permeability of SiC/SiC composite used for in-vessel components of nuclear fusion reactor[J]. Fusion Engineering and Design200573(1):51-56.
[68]
TERRANI K A, ANG C, SNEAD L L, et al. Irradiation stability and thermo-mechanical properties of NITE-SiC irradiated to 10 dpa[J]. Journal of Nuclear Materials2018499:242-247.
[69]
SHIMODA K PARK J S HINOKI T, et al. Microstructural optimization of high-temperature SiC/SiC composites by NITE process[J]. Journal of Nuclear Materials2009386(30):634-638.
[70]
IDRIS M I KONISHI H IMAI M, et al. Neutron irradiation swelling of SiC and SiCf/SiC for advanced nuclear applications[J]. Energy Procedia201571:328-336.
[71]
FITRIANI P SHARMA A S YOON D H. Effects of sintering additives on the microstructural and mechanical properties of the ion-irradiated SiCf/SiC[J]. Journal of Nuclear Materials2018503:226-234.
[72]
PARISH C M TERRANI K A KIM Y J, et al. Microstructure and hydrothermal corrosion behavior of NITE-SiC with various sintering additives in LWR coolant environments[J]. Journal of the European Ceramic Society201737(4):1261-1279.
[73]
黄竑翔,王峰,贺智勇 .热压烧结工艺以及碳纤维含量对C/SiC复合材料性能的影响[J]. 机械工程材料202246(6):44-48.
HUANG H X WANG F HE Z Y. Effect of hot pressing sintering process and carbon fiber content on properties of C/SiC composites[J]. Materials for Mechanical Engineering202246(6):44-48.
[74]
HU P GUI K X HONG W H, et al. High-performance ZrB2-SiC-Cf composite prepared by low-temperature hot pressing using nanosized ZrB2 powder[J]. Journal of the European Ceramic Society201737(6):2317-2324.
[75]
HONG W H GUI K X HU P, et al. Preparation and characterization of high-performance ZrB2-SiC-Cf composites sintered at 1450 ℃[J]. Journal of Advanced Ceramics20176(2):110-119.
[76]
LIU Y CHENG Y H MA D H, et al. Continuous carbon fiber reinforced ZrB2-SiC composites fabricated by direct ink writing combined with low-temperature hot-pressing[J]. Journal of the European Ceramic Society202242(9):3699-3707.
[77]
HU P ZHANG D Y DONG S, et al. A novel vibration-assisted slurry impregnation to fabricate Cf/ZrB2-SiC composite with enhanced mechanical properties [J]. Journal of the European Ceramic Society201939(4):798-805.
[78]
ZHANG D Y HU P DONG S, et al. Oxidation behavior and ablation mechanism of Cf/ZrB2-SiC composite fabricated by vibration-assisted slurry impregnation combined with low temperature hot pressing [J].Corrosion Science2019161:108181.
[79]
桂凯旋,刘方瑜,王刚,等 .ZrB2-SiC-Csf超高温陶瓷复合材料碳纤维损伤抑制研究[J]. 人工晶体学报201847(2):418-423.
GUI K X LIU F Y WANG G, et al. Inhibited degradation of carbon fibers in ZrB2-SiC-Csf ultra-high temperature ceramic composites[J]. Journal of Synthetic Crystals201847(2):418-423.
[80]
URQUHART A W. Novel reinforced ceramics and metals: a review of Lanxide composite technologies[J]. Materials Science and Engineering: A1991144(1):75-82.
[81]
赵敬忠,金志浩 .Lanxide陶瓷基复合材料的研究进展[J]. 硅酸盐通报2002(6):46-52.
ZHAO J Z JIN Z H. Progress in Lanxide ceramic matrix composites[J]. Bulletin of the Chinese Ceramic Society2002(6):46-52.
[82]
AGHAJANIAN M K MACMILLAN N H KENNEDY C R, et al. Properties and microstructures of Lanxide Al2O3-Al ceramic composite materials[J]. Journal of Materials Science198924(2):658-670.
[83]
FAREED A S SONUPARLAK B LEE C T, et al. Mechanical properties of 2‐D nicalon fiber‐reinforced LANXIDE aluminum oxide and aluminum nitride matrix composites[J]. Ceramic Engineering and Science Proceedings19907:782-794.
[84]
AGHAJANIAN M K BIEL J P SMITH R G. AlN matrix composites fabricated via an infiltration and reaction approach[J]. Journal of the American Ceramic Society199477(7):1917-1920.
[85]
HE Q C LU J H WANG Y W, et al. Effects of joint processes of CLVD and PIP on the microstructure and mechanical properties of C/C-ZrC composites[J]. Ceramics International201642(15):17429-17435.
[86]
LI J X LIU Y S HE F, et al. Preparation and properties of SiC/SiC-SiYC with excellent water-oxygen corrosion resistance[J]. Journal of the European Ceramic Society202343(14):6606-6611.
[87]
JIANG J M WANG S LI W, et al. Preparation of 3D Cf/ZrC-SiC composites by joint processes of PIP and RMI[J]. Materials Science and Engineering: A2014607:334-340.

基金

国家自然科学基金项目(92060202)

评论

PDF(1611 KB)

Accesses

Citation

Detail

段落导航
相关文章

/