锂金属电池用石墨烯涂层改性隔膜

于帆, 杜真真, 王珺, 李炯利, 王旭东

PDF(3354 KB)
PDF(3354 KB)
材料工程 ›› 2025, Vol. 53 ›› Issue (7) : 182-190. DOI: 10.11868/j.issn.1001-4381.2024.000482
研究论文

锂金属电池用石墨烯涂层改性隔膜

作者信息 +

Graphene coating modified separator for Li metal batteries

Author information +
History +

摘要

通过隔膜修饰层改性隔膜是一种比较常用的抑制锂枝晶生长,提高电池安全性的手段。本文以金属锂为负极,LiFePO4为正极,石墨烯涂层改性聚丙烯为隔膜,组装成锂电池,通过循环测试、倍率性能测试、电化学阻抗测试以及循环前后锂负极的形貌表征,探究隔膜上石墨烯涂层分别面向电池正极和面向电池负极对电池性能的影响。循环性能测试结果表明,石墨烯涂层面向负极侧的电池在0.2 C的倍率下,首次放电比容量可以达到168 mAh/g,循环500次后,放电比容量仍然可以达到154 mAh/g,容量保持率达到91.67%。电化学阻抗分析发现,石墨烯涂层面向负极侧的电池具有更低的界面电阻和更好的反应动力学,且循环后的锂负极表面均匀平整,未见明显的锂聚集。石墨烯涂层面向负极的锂电池具有更好的循环性能和更高的安全性。

Abstract

Separator modification represents a prevalent approach to inhibiting lithium dendrite growth and enhancing battery safety. In this study, lithium metal serves as the negative electrode, LiFePO4 as the cathode, and a graphene coating modified polypropylene separator is employed. Lithium batteries are assembled and undergo rigorous testing, including cycling tests, rate capability tests, electrochemical impedance spectroscopy (EIS) measurements, and morphological analysis of the lithium negative electrode before and after cycling. The primary focus is to investigate the influence of positioning the graphene coating towards either the cathode or the negative electrode on battery performance. Cycle performance results indicate that when the graphene coating faces the negative electrode, the battery exhibits an initial discharge-specific capacity of 168 mAh/g at 0.2 C. After enduring 500 cycles, the discharge-specific capacity remains stable at 154 mAh/g, yielding a capacity retention rate of 91.67%. EIS analysis further reveals that the battery with the graphene coating oriented towards the negative electrode exhibits decreased interfacial resistance and improved reaction kinetics. Moreover, the surface of the cycled lithium negative electrode remains smooth and uniform, devoid of significant lithium dendrite formation. Consequently, lithium batteries configured with the graphene coating facing the negative electrode demonstrate superior cycle performance and heightened safety.

关键词

改性隔膜 / 石墨烯 / 锂电池 / 枝晶

Key words

modified separator / graphene / lithium battery / dendrite

中图分类号

TB34

引用本文

导出引用
于帆 , 杜真真 , 王珺 , . 锂金属电池用石墨烯涂层改性隔膜. 材料工程. 2025, 53(7): 182-190 https://doi.org/10.11868/j.issn.1001-4381.2024.000482
Fan YU, Zhenzhen DU, Jun WANG, et al. Graphene coating modified separator for Li metal batteries[J]. Journal of Materials Engineering. 2025, 53(7): 182-190 https://doi.org/10.11868/j.issn.1001-4381.2024.000482

参考文献

[1]
WEN Y DING J LIU J, et al. A separator rich in SnF2 and NO 3 - directs an ultra-stable interface toward high performance Li metal batteries[J]. Energy & Environmental Science202316(7): 2957-2967.
[2]
ZHANG W FAN Q ZHANG D, et al. Dynamic charge modulate lithium uniform plating functional composite anode for dendrite-free lithium metal batteries[J]. Nano Energy2022102: 107677.
[3]
WANG J HU H DUAN S, et al. Construction of moisture-stable lithium diffusion-controlling layer toward high performance dendrite-free lithium anode[J]. Advanced Functional Materials202232(12): 2110468.
[4]
XIE Y HUANG Y ZHANG Y, et al. Surface modification using heptafluorobutyric acid to produce highly stable Li metal anodes[J]. Nature Communications202314(1): 2883.
[5]
REN W ZHU K ZHANG W, et al. Dendrite-free lithium metal battery enabled by dendritic mesoporous silica coated separator[J]. Advanced Functional Materials202333(34): 2301586.
[6]
AN Q WANG H ZHAO G, et al. Understanding dual-polar group functionalized COFs for accelerating Li-ion transport and dendrite-free deposition in lithium metal anodes[J]. Energy & Environmental Materials20236(2): e12345.
[7]
SONG J JIANG Y LU Y, et al. A forceful “dendrite-killer” of polyoxomolybdate with reusability effectively dominating dendrite-free lithium metal anode[J]. Small202319(40): 2301740.
[8]
TANG W ZHAO T WANG K, et al. Dendrite-free lithium metal batteries enabled by coordination chemistry in polymer-ceramic modified separators[J]. Advanced Functional Materials202434(18): 2314045.
[9]
KIM H J UMIROV N PARK J S, et al. Lithium dendritic growth inhibitor enabling high capacity, dendrite-free, and high current operation for rechargeable lithium batteries[J]. Energy Storage Materials202246: 76-89.
[10]
LEE H G KIM S Y LEE J S. Dynamic observation of dendrite growth on lithium metal anode during battery charging/discharging cycles[J]. npj Computational Materials20228(1): 960-972.
[11]
LI H ZHANG F WEI W, et al. Promoting air stability of Li anode via an artificial organic/inorganic hybrid layer for dendrite-free lithium batteries[J]. Advanced Energy Materials202313(28): 2301023.
[12]
ZHANG C XIE J ZHAO C, et al. Regulating the lithium ions’ local coordination environment through designing a COF with single atomic Co site to achieve dendrite-free lithium-metal batteries[J]. Advanced Materials202335(40): 2304511.
[13]
FAN Y LIAO J LUO D, et al. In situ formation of a lithiophilic surface on 3D current collectors to regulate lithium nucleation and growth for dendrite-free lithium metal anodes[J]. Chemical Engineering Journal2023453: 139903.
[14]
JIANG W WANG S WANG Y, et al. Silica-modified 3D porous copper current collectors toward stable lithium metal anodes[J]. Energy Technology202311(6): 2300053.
[15]
CHEN H REN B WANG Y, et al. The fabrication of high-performance α-Al2O3 coated PE separator for lithium-ion batteries based on multiple hydrogen bonds[J]. Electrochimica Acta2023465: 142985.
[16]
MUCHAKAYALA R YARRAMSETTI S MARAM P S, et al. Modified ceramic coated polyethylene separator-a strategy for using lithium metal as anode with superior electrochemical performance and thermal stability[J]. Journal of Energy Storage202368: 107687.
[17]
SU M M CHEN Y F WANG S Q, et al. Bifunctional separator with high thermal stability and lithium dendrite inhibition toward high safety lithium-ion batteries[J]. Chinese Chemical Letters202334(5): 107553.
[18]
ZU C LI J CAI B, et al. Separators with reactive metal oxide coatings for dendrite-free lithium metal anodes[J]. Journal of Power Sources2023555: 232336.
[19]
XU S ZHAO T YE Y, et al. A designed lithiophilic carbon channel on separator to regulate lithium deposition behavior[J]. Small202218(2): 2104390.
[20]
SI J LI X REN N, et al. Bifunctional separators with high transference number and uniform ion flux for dendrite-free lithium metal batteries[J].Journal of Power Sources2024599: 234225.
[21]
高春晖, 李宇杰, 孙巍巍, 等. 半限域层次孔炭三维锂负极的构筑及性能[J]. 材料工程202351(8): 170-180.
GAO C H LI Y J SUN W W, et al. Construction and performance of semi-confined hierarchical porous carbon three-dimensional lithium anode[J]. Journal of Materials Engineering202351(8): 170-180.
[22]
PARK M, WOO S, SEO J, et al. Directing the uniform and dense Li deposition via graphene-enhanced separators for high-stability Li metal batteries[J]. Electrochimica Acta2024495: 144426.

评论

PDF(3354 KB)

Accesses

Citation

Detail

段落导航
相关文章

/