
锂金属电池用石墨烯涂层改性隔膜
于帆, 杜真真, 王珺, 李炯利, 王旭东
锂金属电池用石墨烯涂层改性隔膜
Graphene coating modified separator for Li metal batteries
通过隔膜修饰层改性隔膜是一种比较常用的抑制锂枝晶生长,提高电池安全性的手段。本文以金属锂为负极,LiFePO4为正极,石墨烯涂层改性聚丙烯为隔膜,组装成锂电池,通过循环测试、倍率性能测试、电化学阻抗测试以及循环前后锂负极的形貌表征,探究隔膜上石墨烯涂层分别面向电池正极和面向电池负极对电池性能的影响。循环性能测试结果表明,石墨烯涂层面向负极侧的电池在0.2 C的倍率下,首次放电比容量可以达到168 mAh/g,循环500次后,放电比容量仍然可以达到154 mAh/g,容量保持率达到91.67%。电化学阻抗分析发现,石墨烯涂层面向负极侧的电池具有更低的界面电阻和更好的反应动力学,且循环后的锂负极表面均匀平整,未见明显的锂聚集。石墨烯涂层面向负极的锂电池具有更好的循环性能和更高的安全性。
Separator modification represents a prevalent approach to inhibiting lithium dendrite growth and enhancing battery safety. In this study, lithium metal serves as the negative electrode, LiFePO4 as the cathode, and a graphene coating modified polypropylene separator is employed. Lithium batteries are assembled and undergo rigorous testing, including cycling tests, rate capability tests, electrochemical impedance spectroscopy (EIS) measurements, and morphological analysis of the lithium negative electrode before and after cycling. The primary focus is to investigate the influence of positioning the graphene coating towards either the cathode or the negative electrode on battery performance. Cycle performance results indicate that when the graphene coating faces the negative electrode, the battery exhibits an initial discharge-specific capacity of 168 mAh/g at 0.2 C. After enduring 500 cycles, the discharge-specific capacity remains stable at 154 mAh/g, yielding a capacity retention rate of 91.67%. EIS analysis further reveals that the battery with the graphene coating oriented towards the negative electrode exhibits decreased interfacial resistance and improved reaction kinetics. Moreover, the surface of the cycled lithium negative electrode remains smooth and uniform, devoid of significant lithium dendrite formation. Consequently, lithium batteries configured with the graphene coating facing the negative electrode demonstrate superior cycle performance and heightened safety.
modified separator / graphene / lithium battery / dendrite
TB34
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
高春晖, 李宇杰, 孙巍巍, 等. 半限域层次孔炭三维锂负极的构筑及性能[J]. 材料工程, 2023, 51(8): 170-180.
|
[22] |
|
/
〈 |
|
〉 |