Ti2AlNb粉末合金制备及力学性能影响

吴杰, 吴小飞, 田凯, 尹一峰, 崔潇潇, 卢正冠, 徐磊

PDF(7461 KB)
PDF(7461 KB)
材料工程 ›› 2025, Vol. 53 ›› Issue (1) : 175-185. DOI: 10.11868/j.issn.1001-4381.2024.000458
研究论文

Ti2AlNb粉末合金制备及力学性能影响

作者信息 +

Preparation and mechanical properties influencing of Ti2AlNb powder alloy

Author information +
History +

摘要

热等静压工艺是常见的粉末Ti2AlNb合金制备方法,为深入研究制粉工艺等因素对粉末Ti2AlNb合金组织性能的影响,分别采用等离子旋转电极雾化法和无坩埚感应熔炼超声气体雾化法制备Ti2AlNb洁净预合金粉末,并对2种工艺制备的预合金粉末以及二者的混合粉末进行表征。通过热等静压工艺制备Ti2AlNb合金,研究制粉工艺、包套泄漏形成的孔隙缺陷及夹杂物对Ti2AlNb合金显微组织与力学性能的影响,并采用优化的工艺进行多种Ti2AlNb粉末合金构件的成形。实验结果表明:制粉工艺会影响粉末合金的持久性能,包套泄漏引起的孔隙缺陷会显著降低粉末Ti2AlNb合金的力学性能,夹杂物会显著影响粉末合金室温拉伸性能的一致性与稳定性。

Abstract

The hot isostatic pressing process is a usual powder Ti2AlNb alloy preparation method to deeply study the influence of factors such as the powder-making process on the properties of Ti2AlNb powder alloy.Ti2AlNb pre-alloyed powders are prepared by plasma rotating electrode process and electrode induction melting gas atomization, respectively, and their mixed powders are characterized. Ti2AlNb alloy is prepared using a hot isostatic pressing process.The effects of the powder-preparing process, porosity, and inclusion on the microstructure and mechanical properties of the Ti2AlNb alloy are investigated. Optimized processes are employed for the forming of various Ti2AlNb powder metallurgy components. Experimental results show that the powder-making processes affect the durability of the powder alloy, the pore defects caused by slight capsule gas leakage significantly reduce the mechanical properties of the powder Ti2AlNb alloy, and the inclusions obviously affect the consistency and stability of the room-temperature tensile properties of the powder alloy.

关键词

Ti2AlNb合金 / 粉末冶金 / 热等静压 / 近净成形 / 孔隙缺陷

Key words

Ti2AlNb alloy / powder metallurgy / hot isostatic pressing / near-net shape manufacturing / porosity

中图分类号

TG146.2 / TB31

引用本文

导出引用
吴杰 , 吴小飞 , 田凯 , . Ti2AlNb粉末合金制备及力学性能影响. 材料工程. 2025, 53(1): 175-185 https://doi.org/10.11868/j.issn.1001-4381.2024.000458
Jie WU, Xiaofei WU, Kai TIAN, et al. Preparation and mechanical properties influencing of Ti2AlNb powder alloy[J]. Journal of Materials Engineering. 2025, 53(1): 175-185 https://doi.org/10.11868/j.issn.1001-4381.2024.000458

参考文献

[1]
DARY F C POLLOCK T M. Effects of high temperature air and vacuum exposures on the room temperature tensile behavior of the (O+B2) titanium aluminide Ti-22Al-23Nb[J]. Materials Science and Engineering: A1996208(2): 188-202.
[2]
CHENG X Y YU Y G ZHANG D M, et al. Preparation and performance of an abradable NiCrFeAlBN-YSZ-NiCrAl layered seal coating for aircraft engines[J]. Journal of Thermal Spray Technology202029(7): 1804-1814.
[3]
冯艾寒, 陈强, 王剑, 等. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报202359(6): 777-786.
FENG A H CHEN Q WANG J, et al. Thermal stability of microstructures in low-density Ti2AlNb-based alloy hot rolled plate[J]. Acta Metallurgica Sinica202359(6): 777-786.
[4]
徐磊, 姚利盼, 卢正冠, 等. 粉末冶金Ti2AlNb合金研究进展[J]. 航空制造技术201962(22): 14-20.
XU L YAO L P LU Z G, et al. Development of powder metallurgy Ti2AlNb alloys[J]. Aeronautical Manufacturing Technology201962(22): 14-20.
[5]
杨锐. 钛铝金属间化合物的进展与挑战[J]. 金属学报201551(2): 129-147.
YANG R. Advances and challenges of TiAl base alloys[J]. Acta Metallurgica Sinica201551(2): 129-147.
[6]
朱幼宇, 任德春, 雷波, 等. 激光增材制造高温合金原位增强钛合金复合材料的组织与力学性能[J]. 材料工程202452(3): 33-43.
ZHU Y Y REN D C LEI B, et al. Microstructure and mechanical properties of superalloy in-situ reinforced titanium alloy composites by laser additive manufacturing[J]. Journal of Materials Engineering202452(3): 33-43.
[7]
薛松海, 谢嘉琪, 刘时兵, 等. 钛合金粉末冶金热等静压技术及发展现状[J]. 粉末冶金工业202131(5): 87-93.
XUE S H XIE J Q LIU S B, et al. Research process in powder metallurgy hot isostatic pressing technology of titanium alloy[J]. Powder Metallurgy Industry202131(5): 87-93.
[8]
刘石双, 周毅, 李娟, 等. Ti-22Al-23Nb-1Mo-1Zr合金环锻件组织演变及力学行为[J]. 材料工程202250(4): 147-155.
LIU S S ZHOU Y LI J, et al. Microstructure evolution and mechanical behavior of Ti-22Al-23Nb-1Mo-1Zr alloy ring forging[J]. Journal of Materials Engineering202250(4): 147-155.
[9]
POLOZOV I GRACHEVA A POPOVICH A. Interface characterization of bimetallic Ti-6Al-4V/Ti2AlNb structures prepared by selective laser melting[J].Materials202215(23):8508-8516.
[10]
JIA J B LIU H L YANG Z G, et al. Microstructure, densification and mechanical properties of Ti-22Al-25Nb alloy fabricated by spark plasma sintering[J]. Journal of Materials Engineering and Performance202029(2): 1101-1112.
[11]
WU J XU L LU Z G, et al. Preparation and electron beam welding of hip powder metallurgy Ti-22Al-24Nb-0.5Mo alloys[J]. Rare Metal Materials and Engineering201746: 241-245.
[12]
LI Y ZU Y CHEN G, et al. Effect of sintering temperature on microstructure and mechanical properties of Ti2AlNb-based composites[J]. Journal of Materials Research and Technology202429: 4854-4862.
[13]
BOEHLERT C J SABIROV I RUIZ-PALENZUELA B, et al. A comparison of field assisted hot pressing and hot isostatic pressing for gas atomized Ti-22Al-26Nb(at.%)and Ti-22Al-26Nb-5B(at.%)powders[J]. Journal of Alloys and Compounds2021852:156870-156883.
[14]
LI Y Y. Microstructural evolution and mechanical properties of the Ti2AlNb alloy with 3 wt.% W and 0.1 wt.% Y obtained using powder metallurgy technique[J]. Powder Metallurgy and Metal Ceramics202362(5/6): 302-311.
[15]
SUN P FANG Z G Z ZHANG Y, et al. Review of the methods for production of spherical Ti and Ti Alloy powder[J]. JOM201769(10): 1853-1860.
[16]
GUO R P XU L ZONG B Y P, et al. Characterization of prealloyed Ti-6Al-4V powders from EIGA and PREP process and mechanical properties of HIPed powder compacts[J]. Acta Metallurgica Sinica-English Letters201730(8): 735-744.
[17]
CHEN G ZHAO S Y TAN P, et al. A comparative study of Ti-6A1-4V powders for additive manufacturing by gas atomization, plasma rotating electrode process and plasma atomization[J]. Powder Technology2018333: 38-46.
[18]
WU J GUO R P XU L, et al. Effect of hot isostatic pressing loading route on microstructure and mechanical properties of powder metallurgy Ti2AlNb alloys[J]. Journal of Materials Science & Technology201733(2): 172-178.
[19]
郭瑞鹏. 钛合金粉末热等静压成型工艺研究[D]. 沈阳: 东北大学, 2018.
GUO R P. Hot isostatic pressing of titanium alloy powders[D]. Shenyang: Northeastern University, 2018.
[20]
吴杰. 粉末冶金Ti-22Al-24Nb-0.5Mo合金的制备和性能调控[D]. 沈阳: 中国科学院大学, 2016.
WU J. Preparation and mechanical properties optimization of powder metallurgy Ti-22Al-24Nb-0.5Mo alloys[D]. Shenyang: University of Chinese Academy of Sciences, 2016.
[21]
YU C WU S C HU Y N, et al. Three-dimensional imaging of gas pores in fusion welded al alloys by synchrotron radiation X-ray microtomography[J]. Acta Metallurgica Sinica201551(2): 159-168.
[22]
郭瑞鹏. 粉末冶金钛合金力学性能与热等静压致密化研究[D]. 沈阳: 东北大学, 2014.
GUO R P. Mechanical properties of powder metallurgy titanium alloys and densification of titanium powders during HIPing[D]. Shenyang: Northeastern University, 2014.
[23]
徐磊, 吴杰, 崔潇潇, 等. Ti2AlNb近净成形部件的热处理开裂分析[J]. 航空制造技术202063(16): 14-20.
XU L WU J CUI X X, et al. Cracking analysis of powder metallurgy Ti2AlNb component during heat treatment[J]. Aeronautical Manufacturing Technology202063(16): 14-20.
[24]
郭瑞鹏, 徐磊, 柏春光, 等. 包套设计对典型粉末钛合金拉伸性能的影响[J]. 中国有色金属学报201424(8): 2050-2056.
GUO R P XU L BAI C G,et al. Effects of can design on tensile properties of typical powder metallurgy titanium alloys[J]. The Chinese Journal of Nonferrous Metals201424(8): 2050-2056.
[25]
ATKINSON H V DAVIES S. Fundamental aspects of hot isostatic pressing: an overview[J]. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science200031(12): 2981-3000.

基金

国家科技重大专项项目(J2019-Ⅶ-0005-0145)
中国科学院战略性先导科技专项项目(XDA22010102)
稳定支持基础研究领域青年团队计划项目(YSBR-025)

评论

PDF(7461 KB)

Accesses

Citation

Detail

段落导航
相关文章

/