高强铝合金连续送丝搅拌摩擦增材再制造技术

袁靖宇, 孟祥晨, 陈佳霖, 谢聿铭, 张欣盟, 黄永宪

PDF(7152 KB)
PDF(7152 KB)
材料工程 ›› 2025, Vol. 53 ›› Issue (5) : 85-92. DOI: 10.11868/j.issn.1001-4381.2024.000385
熔丝增材制造专栏

高强铝合金连续送丝搅拌摩擦增材再制造技术

作者信息 +

Wire-friction stir additive remanufacturing of high strength aluminum alloys

Author information +
History +

摘要

针对铝合金构件在生产或服役过程中出现的大尺寸裂纹或磨损缺肉等问题,提出了连续送丝搅拌摩擦增材再制造方法,设计了由专用送丝装置、静止轴套与螺杆结构搅拌头组成的搅拌摩擦增材再制造工具,实现了高强铝合金板材表面预置宽度10 mm且深度2 mm的凹槽缺陷的有效填充与修复。结果表明:修复件表面成形良好,组织均匀,力学性能良好;通过动态回复和再结晶过程对晶粒进行细化,晶粒尺寸为1.59 μm;修复件平均抗拉强度和伸长率分别为(410±8) MPa和(11.9±0.9)%,相较于带缺陷试样分别提高了26% 和159%;断口表面具有大量的韧窝,呈典型的韧性断裂特征。

Abstract

A wire-based friction stir additive remanufacturing (W-FSAR) method is proposed to address large cracks and material loss in aluminum alloy components during production and service. The W-FSAR tools consist of a wire feeding device, a stationary sleeve, and a screw-structured stirring head. This method effectively fills and repairs 10 mm-width and 2 mm-depth groove defects in aluminum alloy components. The results indicate the repaired sample has high repair efficiency, smooth morphology, homogeneous microstructure, and excellent mechanical properties. The dynamic recovery and recrystallization processes refine the grain size to 1.59 μm. The ultimate tensile strength and elongation of the repaired samples are (410±8) MPa and (11.9±0.9)%, respectively, which increase by 26% and 159% compared to the worn-out specimens. There are numerous dimples on the fracture surface, exhibiting typical ductile fracture characteristics.

关键词

搅拌摩擦修复 / 固相再制造 / 7A52铝合金 / 微观组织 / 力学性能

Key words

friction stir repairing / solid state remanufacturing / 7A52 aluminum alloy / microstructure / mechanical property

中图分类号

TG453.9 / TB31

引用本文

导出引用
袁靖宇 , 孟祥晨 , 陈佳霖 , . 高强铝合金连续送丝搅拌摩擦增材再制造技术. 材料工程. 2025, 53(5): 85-92 https://doi.org/10.11868/j.issn.1001-4381.2024.000385
Jingyu YUAN, Xiangchen MENG, Jialin CHEN, et al. Wire-friction stir additive remanufacturing of high strength aluminum alloys[J]. Journal of Materials Engineering. 2025, 53(5): 85-92 https://doi.org/10.11868/j.issn.1001-4381.2024.000385

参考文献

[1]
徐滨士. 绿色再制造工程———21世纪的重要产业[J]. 航空制造技术2002(6):26-28.
XU B S .Green remanufacture engineering—important industry in 21st century[J] . Aeronautical Manufacturing Technology2002(6):26-28.
[2]
王海斗,张文宇,宋巍. 再制造二十年足迹及发展趋势[J].机械工程学报202359(20):80-95.
WANG H D ZHANG W Y SONG W .Twenty years of remanufacturing footprint and development trends[J].Journal of Mechanical Engineering202359(20):80-95.
[3]
MA S SHANG Z SHANG A,et al. Additive manufacturing enabled synergetic strengthening of bimodal reinforcing particles for aluminum matrix composites[J]. Additive Manufacturing202370:103543.
[4]
JIANG A ZHANG X XU Z,et al. A model for solute evolution in laser powder bed fused Al-Si alloys and its application to improve thermal conductivity[J]. Acta Materialia2024262:119444.
[5]
GU D D SHI X POPRAWE R,et al. Material-structure-performance integrated laser-metal additive manufacturing[J]. Science2021372(6545):1-15.
[6]
CHEN Y YANG C FAN C,et al. The influence of solution temperature on microstructure evolution and mechanical properties of ATI 718Plus repaired by wire and arc additive manufacturing[J]. Materials Science and Engineering: A2022852(92):143641.
[7]
CALLANAN J G BLACK A N LAWRENCE S K,et al. Dynamic properties of 316L stainless steel repaired using electron beam additive manufacturing[J]. Acta Materialia2023246:118636.
[8]
刘志浩,王文,韩鹏,等. 搅拌摩擦加工改性冷喷涂6061铝合金涂层的断裂行为[J]. 塑性工程学报202330(3):190-196.
LIU Z H WANG W HAN P,et al .Fracture behavior of cold-sprayed 6061 alumimum alloy coating modified by friction stir processing[J]. Journal of Plasticity Engineering202330(3):190-196.
[9]
徐荣,王文军,祝弘滨,等. 激光定向能量沉积Al-Mg-Sc-Zr修复5083-H112铝合金的组织和性能[J]. 材料工程202452(2):40-49.
XU R WANG W J ZHU H B,et al. Microstructure and properties of repaired 5083-H112 aluminum alloy by laser direct energy deposited Al-Mg-Sc-Zr[J]. Journal of Materials Engineering202452(2):40-49.
[10]
刘海滨,徐添乐,谢瑞山. 航空航天领域轻合金缺陷修复研究现状及发展趋势[J]. 航天制造技术202366(2):1-9.
LIU H B XU T L XIE R S. Research status and development trend of light alloy defect repair in aerospace field[J]. Aerospace Manufacturing Technology202366(2):1-9.
[11]
陈刚,武凯,孙宇,等. 搅拌摩擦沉积增材技术研究进展[J].材料工程202451(1):52-63.
CHEN G WU K SU Y,et al. Research progress in additive friction stir deposition[J]. Journal of Materials Engineering202451(1):52-63.
[12]
TSARKOV A TRUKHANOV K ZYBIN I. The influence of gaps on friction stir welded AA5083 plates[J]. Materials Today: Proceedings201919:1869-1874.
[13]
张欣盟,何广忠,王贝贝,等. 6082- T6 铝合金填料搅拌摩擦焊工艺[J]. 电焊机202050(12):54-58.
ZHANG X M HE G Z WANG B B,et al. 6082-T6 aluminum alloy filler friction stir welding process[J]. Electric Welding Machine202050(12):54-58.
[14]
REIMANN M GOEBEL J DOS SANTOS J F. Microstructure and mechanical properties of keyhole repair welds in AA 7075-T651 using refill friction stir spot welding[J]. Materials & Design2017132:283-294.
[15]
JI S MENG X ZENG Y,et al. New technique for eliminating keyhole by active-passive filling friction stir repairing[J]. Materials & Design201697:175-182.
[16]
LIU F DONG P KHAN A S,et al. 3D printing of fine-grained aluminum alloys through extrusion-based additive manufacturing: microstructure and property characterization[J]. Journal of Materials Science and Technology2023139:126-136.
[17]
JOEY G R PETERSEN D T GARCIA D,et al. Additive friction stir-enabled solid-state additive manufacturing for the repair of 7075 aluminum alloy[J].Applied Sciences20199(17):3486.
[18]
DAMODARAM R,RAI P, CYRIL J D S,et al. Friction surfacing: a tool for surface crack repair[J]. Surface and Coatings Technology2021422:127482.
[19]
AGRAWAL P HARIDAS R S YADAV S,et al. Processing-structure-property correlation in additive friction stir deposited Ti-6Al-4V alloy from recycled metal chips[J]. Additive Manufacturing202147:102259.
[20]
PHILLIPS B J MASON C J T BECK S C,et al. Effect of parallel deposition path and interface material flow on resulting microstructure and tensile behavior of Al-Mg-Si alloy fabricated by additive friction stir deposition[J]. Journal of Materials Processing Technology2021295:117169.
[21]
GOTAWALA N KUMAR M N SHRIVASTAVA A. Solid-state depositions of multilayer SS304 by friction stir metal deposition[J]. Materials Letters2022314:131881.
[22]
CHEN H MENG X CHEN J,et al. Wire-based friction stir additive manufacturing[J].Additive Manufacturing202370:103557.
[23]
王东,韩世伟,张世全,等. 5B06焊丝在7A52装甲铝合金上的焊接性研究[J]. 兵器材料科学与工程201639(6):17-20.
WANG D HAN S W ZHANG S Q,et al. ER5B06 weldability on 7A52 armored aluminum alloy[J]. Ordnance Material Science and Engineering201639(6):17-20.
[24]
井瑞,谭茂举,武传松,等. 2A12/AZ31B异质合金超声振动辅助搅拌摩擦焊核区晶粒组织[J]. 材料工程202351(12): 75-83.
JING R TAN M J WU C S,et al. Grain structure in ultrasonic vibration assisted friction stir weld nugget zones of 2A12/AZ31B dissimilar alloys[J]. Journal of Materials Engineering202351(12):75-83.

基金

黑龙江省自然科学基金项目(LH2022E058)
中央高校基本科研业务费专项资金资助(HITDZJJ2023006)

评论

PDF(7152 KB)

Accesses

Citation

Detail

段落导航
相关文章

/