Al和Cu共添加对FeCoNiAlCu高熵合金微观组织与腐蚀行为的影响

李旭, 袁嘉驰, 张志彬, 鲁凯举, 蒋斌, 梁秀兵

PDF(10499 KB)
PDF(10499 KB)
材料工程 ›› 2025, Vol. 53 ›› Issue (2) : 28-38. DOI: 10.11868/j.issn.1001-4381.2024.000301
装备防护技术专栏

Al和Cu共添加对FeCoNiAlCu高熵合金微观组织与腐蚀行为的影响

作者信息 +

Co-addition of Al and Cu on microstructure and corrosion behavior of FeCoNiAlCu high-entropy alloys

Author information +
History +

摘要

在高熵合金中添加适量的Al,Cu原子可以显著提升合金的力学性能,但是关于Al,Cu原子对高熵合金耐腐蚀性能的研究报道较少。为揭示Al,Cu原子对高熵合金腐蚀行为的影响规律,本工作以具有优异力学性能的FeCoNi基中熵合金为研究对象,通过高熵合金成分设计经验公式设计了FCC单相Fe25Co25Ni25Al10Cu15(Al10Cu15)合金以及BCC+FCC双相Fe25Co25Ni25Al15Cu10(Al15Cu10)和Fe25Co25Ni25Al20Cu5(Al20Cu5)合金。XRD物相分析表明,随着Al含量的增加,FCC相占比逐渐降低,BCC占比逐渐提高,与理论计算结果一致。SEM微观组织和EDS分析表明,增加Al的添加量,减少Cu的添加量,晶粒的形貌由树枝晶(Al10Cu15,Al15Cu10)转变为等轴晶(Al20Cu5),枝晶间相的成分也会发生显著变化。Al10Cu15枝晶间的组织为富Cu的FCC相,Al15Cu10枝晶间的组织为富Al,Ni,Cu的BCC相,Al20Cu5晶界的组织为富Fe,Co的FCC相。动电位极化 (potentiodynamic polarization, PDP) 实验表明,Al含量较高的合金为两相结构,在长周期浸泡过程中容易发生电偶腐蚀,钝化膜的完整性易遭到破坏,导致合金的耐腐蚀性较差。电化学阻抗谱(electrochemical impedance spectroscopy, EIS)测试表明,随着浸泡时间的延长,Al添加量较高的合金反应电阻会出现显著的下降,与PDP分析结果一致。室温静态浸泡实验表明,与Al10Cu15合金相比,Al15Cu10与Al20Cu5合金在长时间的浸泡下,更容易发生电偶腐蚀。由此可得,过量添加Al原子诱发的第二相,会显著恶化材料的耐腐蚀性能。保证合金组织成分的均匀性,是提升材料耐腐蚀性能的有效手段。

Abstract

Adding appropriate amounts of Al and Cu atoms to high-entropy alloys (HEAs) can significantly improve mechanical properties of the alloys, but there are few research reports on the corrosion resistance of Al and Cu atoms in HEAs. To reveal the influence of Al and Cu atoms on the corrosion behavior of HEAs, this study focuses on FeCoNi based medium entropy alloys with excellent mechanical properties. FCC single-phase Fe25Co25Ni25Al10Cu15(Al10Cu15) alloy and BCC+FCC dual-phase Fe25Co25Ni25Al15Cu10(Al15Cu10) and Fe25Co25Ni25Al20Cu5(Al20Cu5) alloys are designed using empirical formulas for high-entropy alloy composition design. XRD analysis shows that the amount of FCC phase decreases and the amount of BCC increases with the increase of Al content, which is consistent with the theoretical calculation. SEM microstructure and EDS analysis show that increasing the amount of Al added and decreasing the amount of Cu added result in a transformation of the grain morphology from dendritic (Al10Cu15, Al15Cu10) to equiaxed (Al20Cu5), and the composition of the interdendritic also changes significantly. The Al10Cu15 interdendritic microstructure is a Cu-rich FCC phase, the Al15Cu10 interdendritic microstructure is an Al-, Ni- and Cu-rich BCC phase, and the Al20Cu5 grain boundaries microstructure is a Fe- and Co-rich FCC phase. The potentiodynamic polarization(PDP) experiments show that alloys with high Al content have a dual-phase structure and are prone to galvanic corrosion during long-term immersion. The integrity of the passivation film is easily damaged, resulting in poor corrosion resistance of the alloy. The electrochemical impedance spectroscopy (EIS) tests show that the reaction resistance of alloys with higher Al additions decreases significantly with the prolongation of immersion time, which is consistent with the results of PDP analysis. Static immersion experiments at room temperature show that compared with Al10Cu15 alloy, Al15Cu10 and Al20Cu5 alloys are more susceptible to galvanic corrosion under prolonged immersion. It can be concluded that the addition of an excessive amount of Al atoms induced by the second phase significantly deteriorates the corrosion resistance of the material. Ensuring the homogeneity of alloy structure composition is an effective means to improve the corrosion resistance of materials.

关键词

高熵合金 / 腐蚀行为 / 微观组织 / 动电位极化 / 电化学阻抗 / 电偶腐蚀

Key words

high-entropy alloy / corrosion behavior / microstructure / potentiodynamic polarization / electrochemical impedance / galvanic corrosion

中图分类号

TG174 / TB31

引用本文

导出引用
李旭 , 袁嘉驰 , 张志彬 , . Al和Cu共添加对FeCoNiAlCu高熵合金微观组织与腐蚀行为的影响. 材料工程. 2025, 53(2): 28-38 https://doi.org/10.11868/j.issn.1001-4381.2024.000301
Xu LI, Jiachi YUAN, Zhibin ZHANG, et al. Co-addition of Al and Cu on microstructure and corrosion behavior of FeCoNiAlCu high-entropy alloys[J]. Journal of Materials Engineering. 2025, 53(2): 28-38 https://doi.org/10.11868/j.issn.1001-4381.2024.000301

参考文献

[1]
YEH J W CHEN S K LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J]. Advanced Engineering Materials20046(5): 299-303.
[2]
LI Z ZHAO P LU T, et al. Effects of post annealing on the microstructure, precipitation behavior, and mechanical property of a (CoCrNi)94Al3Ti3 medium-entropy alloy fabricated by laser powder bed fusion[J]. Journal of Materials Science & Technology2023135: 142-155.
[3]
刘继文, 胡朝辉, 王君阳, 等. NiCoCrFeAlTiMoW合金长期时效过程中γ′相粗化对拉伸性能的影响[J]. 材料工程202452(2): 172-179.
LIU J W HU Z H WANG J Y, et al. Effect of γ′ phase coarsening on tensile properties during long-term aging of NiCoCrFeAlTiMoW alloy[J]. Journal of Materials Engineering202452(2): 172-179.
[4]
吴昊, 于佳石, 贾志强, 等. 难熔高熵合金研究进展[J]. 航空材料学报202444(2): 45-59.
WU H YU J S JIA Z Q, et al. Progress of refractory high entropy alloys[J]. Journal of Aeronautical Materials202444(2): 45-59.
[5]
GLUDOVATZ B HOHENWARTER A CATOOR D, et al. A fracture-resistant high-entropy alloy for cryogenic applications[J]. Science2014345(6201):1153-1158.
[6]
YANG T ZHAO Y L TONG Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys[J]. Science2018362(6417):933-937.
[7]
KLIMOVA M V SEMENYUK A O SHAYSULTANOV D G, et al. Effect of carbon on cryogenic tensile behavior of CoCrFeMnNi-type high entropy alloys[J]. Journal of Alloys and Compounds2019811: 152000.
[8]
LAPLANCHE G KOSTKA A REINHART C, et al. Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi[J]. Acta Materialia2017128: 292-303.
[9]
LAPLANCHE G KOSTKA A HORST O M, et al. Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy[J]. Acta Materialia2016118: 152-163.
[10]
SHUANG S YU Q GAO X, et al. Tuning the microstructure for superb corrosion resistance in eutectic high entropy alloy[J]. Journal of Materials Science & Technology2022109: 197-208.
[11]
DING X X WANG J LIU D, et al. Heterostructuring an equiatomic CoNiFe medium-entropy alloy for enhanced yield strength and ductility synergy[J].Rare Metals202241(8): 2894-2905.
[12]
LIU D YU Q KABRA S, et al. Exceptional fracture toughness of CrCoNi-based medium- and high-entropy alloys at 20 kelvin[J]. Science2022378(6623): 978-983.
[13]
HUO W FANG F ZHOU H, et al. Remarkable strength of CoCrFeNi high-entropy alloy wires at cryogenic and elevated temperatures[J]. Scripta Materialia2017141: 125-128.
[14]
LI Q ZHAO S BAO X, et al. Effects of AlCoCrFeNiTi high-entropy alloy on microstructure and mechanical properties of pure aluminum[J]. Journal of Materials Science & Technology202052: 1-11.
[15]
DASARI S CHAUDHARY V GWALANI B, et al. Highly tunable magnetic and mechanical properties in an Al0.3CoFeNi complex concentrated alloy[J]. Materialia202012: 100755.
[16]
ZHANG Z WANG Q MU D, et al. Microstructure evolution and mechanical properties of CoCrFeNiAl0.3 high entropy alloy produced by ball milling in combination with thermomechanical consolidation[J]. Materials Characterization2022187: 111833.
[17]
QIN G CHEN R MAO H, et al. Experimental and theoretical investigations on the phase stability and mechanical properties of Cr7Mn25Co9Ni23Cu36 high-entropy alloy[J]. Acta Materialia2021208: 116763.
[18]
QIN G CHEN R LIAW P K, et al. A novel face-centered-cubic high-entropy alloy strengthened by nanoscale precipitates[J]. Scripta Materialia2019172: 51-55.
[19]
NAGASE T RACK P D NOH J H, et al. In-situ TEM observation of structural changes in nano-crystalline CoCrCuFeNi multicomponent high-entropy alloy (HEA) under fast electron irradiation by high voltage electron microscopy (HVEM)[J]. Intermetallics201559: 32-42.
[20]
VERMA A TARATE P ABHYANKAR A C, et al. High temperature wear in CoCrFeNiCu x high entropy alloys: the role of Cu[J]. Scripta Materialia2019161: 28-31.
[21]
ROGAL Ł. Semi-solid processing of the CoCrCuFeNi high entropy alloy[J]. Materials & Design2017119: 406-416.
[22]
SINGH S WANDERKA N MURTY B S, et al. Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy[J]. Acta Materialia201159(1): 182-190.
[23]
NIU S KOU H GUO T, et al. Strengthening of nanoprecipitations in an annealed Al0.5CoCrFeNi high entropy alloy[J]. Materials Science and Engineering: A2016671: 82-86.
[24]
HU Q WANG H L QIAN L H, et al. Effects of Cu additions on microstructure and mechanical properties of as-cast CrFeCoNiCu high-entropy alloy[J]. Transactions of Nonferrous Metals Society of China202333(6): 1803-1813.
[25]
HSU Y J CHIANG W C WU J K. Corrosion behavior of FeCoNiCrCu x high-entropy alloys in 3.5% sodium chloride solution[J]. Materials Chemistry and Physics200592(1): 112-117.
[26]
SHI Y YANG B XIE X, et al. Corrosion of Al x CoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior[J]. Corrosion Science2017119: 33-45.
[27]
GUO S, NG C, LU J, et al. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys[J]. Journal of Applied Physics2011109(10): 103505.
[28]
NASCIMENTO C B DONATUS U RÍOS C T, et al. Electronic properties of the passive films formed on CoCrFeNi and CoCrFeNiAl high entropy alloys in sodium chloride solution[J]. Journal of Materials Research and Technology20209(6): 13879-13892.

基金

国家自然科学基金项目(52275225)

评论

PDF(10499 KB)

Accesses

Citation

Detail

段落导航
相关文章

/