
高强耐热铸造铝合金及其航空发动机复杂壳体铸件的性能研究
茄菊红, 谢峰, 冯超, 王平海, 余腾飞, 杨朝阳, 郗洪雷, 肖文龙, 马朝利
高强耐热铸造铝合金及其航空发动机复杂壳体铸件的性能研究
Performance of high-strength and heat-resistant cast aluminum alloy and its complex shell castings for aircraft engines
针对先进航空发动机对高强耐热铝合金复杂壳体铸件的应用需求,对比分析一种新型Al-Si-Cu-Mg-Sc高强耐热铝合金与ZL101A,ZL205A铸造铝合金的工艺性能及力学性能,并采用高强耐热铝合金开展油泵复杂壳体金属型铸造工艺设计和实验验证,对铸件产品的质量进行检测分析。结果表明:新型Al-Si-Cu-Mg-Sc高强耐热铝合金的铸造流动性和抗热裂性能优于ZL205A高强铸造铝合金,其金属型铸造油泵复杂壳体的合格率与ZL101A同类壳体相当。新型合金的单铸试样和铸件本体取样的室温平均抗拉强度均达到420 MPa以上,明显高于ZL101A合金,250 ℃时其抗拉强度优于ZL205A合金。铸件的表面质量、内部质量、气密性和承压性能均满足产品设计要求。
To meet the application requirement of advanced aviation engines for complex shell castings of high-strength and heat-resistant aluminum alloys, the process and mechanical properties of a new type of the Al-Si-Cu-Mg-Sc high-strength and heat-resistant aluminum alloy are analysed in comparison with ZL101A and ZL205A cast aluminum alloys. Design and experimental verification of the metal casting process for the complex casing of the oil pump are carried out by using the high-strength and heat-resistant aluminum alloy, and the quality of the casting products is evaluated. The results indicate that the new high-strength and heat-resistant Al-Si-Cu-Mg-Sc alloy shows better casting fluidity and hot cracking resistance than the ZL205A high-strength cast Al alloy. The qualification rate of the complex shell of its metal casting oil pump is comparable to that of the same type of shell ZL101A. The average tensile strengths at room temperature of the separated test bar of casting and test specimen from casting itself of the new alloy are higher than 420 MPa, which are significantly higher than that of ZL101A alloy, while the tensile strengths at 250 ℃ are superior to ZL205A alloy. The surface quality, internal quality, airtightness, and pressure resistant performance of the casting case all meet the design requirement of the product.
高强耐热铝合金 / Al-Si-Cu-Mg / 铸造性能 / 力学性能 / 航空发动机油泵壳体
high-strength and heat-resistant aluminium alloy / Al-Si-Cu-Mg / castability / mechanical property / aeroengine oil pump case
TG292 / TB31
[1] |
吴思,韩定邦,常海,等 .典型工况下飞机液压系统温度特性仿真分析[J].液压与气动,2020(4):170-176.
|
[2] |
中国航空材料手册委员会. 中国航空材料手册第3卷:铝合金 镁合金[M].北京:中国标准出版社,2002:367-375.
China Aeronautical Materials Handbook Committee. China aeronautical materials handbook volume 3:aluminium alloys magnesium alloys[M]. Beijing: China Standard Press, 2002:367-375.
|
[3] |
赵玉厚,周敬恩,严文 .增强相Al3Ti状态对Al3Ti/ZL101原位复合材料力学性能的影响[J].材料工程,2001(5):3-8.
|
[4] |
洪润洲,周永江,姚惟斌 .时效工艺对ZL101A合金性能的影响[J].材料工程,2004(10):39-41.
|
[5] |
陈邦峰,贾泮江 .ZL205A铝合金铸件偏析缺陷的断口形貌和化学成分[J].材料工程,2010(9):1-6.
|
[6] |
杜旭初,洪润洲,刘建军,等 .大型复杂高强度ZL205A铝合金骨架铸件的研制[J].铸造,2014,63(4):371-374.
|
[7] |
贾泮江,陈邦峰 .ZL205A合金高强优质铸件在大飞机上的应用[J].材料工程,2009(1):77-80.
|
[8] |
谭芳,陈治海 .ZL205A合金熔模铸造工艺研究[J]. 航空材料学报,2003,23(): 113-117.
增刊
Suppl
|
[9] |
张华炜,刘悦,范同祥 .铸造耐热铝合金的研究进展及展望[J].材料导报,2022, 36(2): 149-157.
|
[10] |
张春波,王祝堂. 航空航天器铸造铝合金(1)[J].轻合金加工技术,2012,40(11):5-18.
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
车欣,陈立佳,李锋 .Sc对金属型铸造Al-Si-Cu-Mg合金疲劳行为的影响[J]. 沈阳工业大学学报, 2012, 34(4): 402-406.
|
[16] |
陈大辉,汤进军,邰红岩,等. 发动机缸盖用新型Al-Si-Cu-Mg铝合金材料[J].车用发动机,2011(6):85-89.
|
[17] |
刘闪光,李国爱,罗传彪,等. Sc元素对ZL205A合金组织和力学性能的影响[J].材料工程,2020,48(1):84-91.
|
[18] |
高一涵,刘刚,孙军 .耐热铝基合金研究进展:微观组织设计与析出策略[J].金属学报,2021,57(2):129-149.
|
[19] |
肖文龙,郗洪雷,李恒,等 .一种高强耐热铸造铝合金及其热处理方法: ZL202211162428.7[P]. 2022-12-02.
|
[20] |
|
[21] |
|
[22] |
隋育栋 .Al-Si-Cu-Ni-Mg系铸造耐热铝合金组织及其高温性能研究[D].上海:上海交通大学,2016.
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
吴士平,王晔,陈立亮,等 .汽车铝合金排水管倾转铸造数值模拟[J].特种铸造及有色合金,2011,31(6):514-516.
|
[29] |
王娟,韩虎,邵正国 .齿轮箱体气孔的形成原因分析及改善措施[J].铸造,2014,63(11):1185-1187.
|
[30] |
秦红斌,黄攀,高晓灵,等 .基于数值模拟的卡钳铸造工艺优化设计[J].特种铸造及有色合金,2018,38(5):505-508.
|
/
〈 |
|
〉 |