超细/纳米WC-Co硬质合金的烧结方式和晶粒抑制剂研究进展

刘家颖, 赵志伟, 高子梅, 江浩

PDF(6333 KB)
PDF(6333 KB)
材料工程 ›› 2025, Vol. 53 ›› Issue (2) : 71-83. DOI: 10.11868/j.issn.1001-4381.2024.000280
综述

超细/纳米WC-Co硬质合金的烧结方式和晶粒抑制剂研究进展

作者信息 +

Research progress in sintering methods and grain inhibition of ultrafine/nano WC-Co cemented carbide

Author information +
History +

摘要

WC-Co硬质合金具有较高硬度、强度、耐磨性等性能而广泛应用于各种工业领域。相比于常规硬质合金,超细/纳米硬质合金的综合性能大大提升。制备超细/纳米硬质合金的关键在于抑制WC晶粒在烧结过程中的长大。本文从制备硬质合金的烧结方式和晶粒抑制剂两个方面探讨了抑制WC晶粒生长的关键因素及研究现状;介绍了常规烧结方式与快速烧结方式的优缺点;比较了不同烧结方式所制备硬质合金的晶粒尺寸与性能;介绍了其他增韧填料的抑制和增强作用、晶粒抑制剂的作用机理和复合晶粒抑制剂的优势。最后对制备超细/纳米硬质合金的快速烧结方式以及复合晶粒抑制剂提出了展望。快速烧结方式可以和计算机模拟相结合,促进快速烧结方式的广泛应用;复合晶粒抑制剂的种类、添加方式等需要进一步探索。

Abstract

WC-Co cemented carbides are widely used in various industrial fields because of their high hardness, strength, wear resistance, and other properties. Compared with conventional cemented carbides, the comprehensive properties of ultrafine/nano cemented carbides are greatly improved. The key to preparing ultrafine/nano-cemented carbides is inhibiting the growth of WC grains in the sintering process. In this study, the key factors inhibiting WC grain growth and the research status worldwide are discussed from two aspects of sintering methods and grain growth inhibitors for preparing cemented carbides. The advantages and disadvantages of the conventional sintering method and rapid sintering method are introduced, and the grain size and properties of cemented carbide prepared by different sintering methods are compared. The inhibition and reinforcement of other toughening fillers, the mechanism of grain inhibitors, and the advantages of composite grain inhibitors are introduced. Finally, the rapid sintering method and the composite grain inhibitors for preparing ultrafine/nano cemented carbides are proposed. The rapid sintering method can be combined with computer simulation to promote its wide application, and the types and adding methods of composite grain inhibitors require furthur exploration.

关键词

超细/纳米硬质合金 / 烧结方式 / 晶粒抑制剂 / 晶粒生长

Key words

ultrafine/nano cemented carbide / sintering method / grain growth inhibitor / grain growth

中图分类号

TG125.3

引用本文

导出引用
刘家颖 , 赵志伟 , 高子梅 , . 超细/纳米WC-Co硬质合金的烧结方式和晶粒抑制剂研究进展. 材料工程. 2025, 53(2): 71-83 https://doi.org/10.11868/j.issn.1001-4381.2024.000280
Jiaying LIU, Zhiwei ZHAO, Zimei GAO, et al. Research progress in sintering methods and grain inhibition of ultrafine/nano WC-Co cemented carbide[J]. Journal of Materials Engineering. 2025, 53(2): 71-83 https://doi.org/10.11868/j.issn.1001-4381.2024.000280

参考文献

[1]
GARCÍA J COLLADO C V BLOMQVIST A, et al. Cemented carbide microstructures: a review[J]. International Journal of Refractory Metals and Hard Materials201980:40-68.
[2]
LI C W CHANG K C YEH A C. On the microstructure and properties of an advanced cemented carbide system processed by selective laser melting[J]. Journal of Alloys and Compounds2019782:440-450.
[3]
于淞百, 蒋豪丽, 闵凡路, 等. 超细WC和细WC/Co添加对WC-10Co硬质合金微观结构与力学性能的影响[J]. 材料工程202351(7): 136-145.
YU S B IANG H J MIN F L, et al. Effects of addition of ultrafine WC and fine WC/Co on microstructure and mechanical properties of WC-10Co cemented carbides[J]. Journal of Materials Engineering202351(7): 136-145.
[4]
HE R G LI B OU P H, et al. Effects of ultrafine WC on the densification behavior and microstructural evolution of coarse-grained WC-5Co cemented carbides[J]. Ceramics International202046:2852-12860.
[5]
余顺仕, 陈松, 李广慧, 等. WC/Co硬质合金界面特征分布[J]. 材料工程202452(7): 204-213.
YU S S CHEN S LI G H, et al. Interface character distributions in WC/Co cemented carbide[J]. Journal of Materials Engineering202452(7): 204-213.
[6]
廖宇, 张钱伟, 胡启明. 硬质合金中Co相强化的研究现状与展望[J]. 材料工程202452(7): 109-119.
LIAO Y ZHANG Q W HU Q M. Research status and prospect of Co-phase strengthening in cemented carbide[J]. Journal of Materials Engineering202452(7): 109-119.
[7]
GUO W T LI K DU Y, et al. Microstructure and composition of segregation layers at WC/Co interfaces in ultrafine-grained cemented carbides co-doped with Cr and V[J]. International Journal of Refractory Metals and Hard Materials201658:68-73.
[8]
LIU X W SONG X Y WANG H B, et al. Complexions in WC-Co cemented carbides[J]. Acta Materialia2018149:164-178.
[9]
SINGH R SHARMA V. Experimental investigation for cutting performance of cemented carbide cutting insert developed through microwave sintering[J]. International Journal of Refractory Metals and Hard Material2022106, 105867.
[10]
WANG B X WANG Z H YIN Z B, et al. Preparation and properties of the VC/Cr3C2/TaC doped ultrafine WC-Co tool material by spark plasma sintering[J]. Journal of Alloys and Compounds2020816:152598.
[11]
程鑫.自蔓延燃烧超快速合成Cu2SnSe3基化合物及其热电性能研究[D]. 武汉:武汉理工大学,2019.
CHENG X. Self-propagating high-temperature synthesis and thermoelectric performances of Cu2SnSe3 based compounds[D]. Wuhan:Wuhan University of Technology, 2019.
[12]
SUN L YANG T E JIA C C, et al. VC, Cr3C2 doped ultrafine WC-Co cemented carbides prepared by spark plasma sintering[J]. International Journal of Refractory Metals and Hard Materials201129:147-152.
[13]
FANG Z Z WANG H T KUMAR V. Coarsening, densification, and grain growth during sintering of nano-sized powders-a perspective[J]. International Journal of Refractory Metals and Hard Materials201762:110-117.
[14]
SAHEB N ALGHANIM A. Low temperature synthesis of highly pure cordierite materials by spark plasma sintering nano-oxide powders[J]. Ceramics International202046:23910-23921.
[15]
何伟锋, 杨宇辉, 王珂玮, 等. 真空烧结温度对WC-Co硬质合金微观组织及性能的影响[J]. 热加工工艺202352:72-77.
HE W F YANG Y H WANG K W,et al. Effect of vacuum sintering temperature on microstructure and properties of WC-Co cemented carbide[J]. Hot Working Technology202352:72-77.
[16]
LIN H SUN J C LI C H, et al. A facile route to synthesize WC-Co nanocomposite powders and properties of sintered bulk[J]. Journal of Alloys and Compounds2016682:531-536.
[17]
CHANG S H CHANG P Y. Study on the mechanical properties, microstructure and corrosion behaviors of nano-WC-Co-Ni-Fe hard materials through HIP and hot-press sintering processes[J]. Materials Science and Engineering:A2014618: 56-62.
[18]
WEI C B SONG X Y FU J, et al. Microstructure and properties of ultrafine cemented carbides-differences in spark plasma sintering and sinter-HIP[J]. Materials Science and Engineering: A2012552: 427-433.
[19]
MEREDITH R J. Engineers′ handbook of industrial microwave heating[M]. London: The Institution of Engineering and Technology, 2011.
[20]
RUMMAN R CHUAN L C QUINTON J S, et al. Understanding the potential of microwave sintering on WC-Co[J]. International Journal of Refractory Metals & Hard Materials201981:7-14.
[21]
QIAN Y J ZHAO Z W. Microstructure and properties of ultrafine cemented carbides prepared by microwave sintering of nanocomposites[J]. Crystal202010:507.
[22]
BAO R YI J H PENG Y D, et al. Skin effect of WC-8wt.% Co alloy by microwave sintering[J]. Rare Metals202241:1364-1368.
[23]
WANG L J ZHANG J F JIANG W. Recent development in reactive synthesis of nanostructured bulk materials by spark plasma sintering[J]. International Journal of Refractory Metals & Hard Materials201339:103-112.
[24]
SIWAK P GARBIEC D. Microstructure and mechanical properties of WC-Co, WC-Co-Cr3C2 and WC-Co-TaC cermets fabricated by spark plasma sintering[J]. Transactions of Nonferrous Metals Society of China201626:2641-2646.
[25]
赵海锋,朱丽慧,黄清伟. 放电等离子技术快速烧结纳米WC-10%Co-0.8%VC硬质合金[J]. 稀有金属材料与工程200534(1):82-85.
ZHAO H F ZHU L H HUANG Q W. Nanocrystalline WC-10%Co-0.8%VC cemented carbides prepared by spark plasma sintering[J]. Rare Metal Materials and Engineering200534(1):82-85.
[26]
KIM H C SHON I J JEONG I K, et al. Rapid sintering of ultra fine WC and WC-Co hard materials by high-frequency induction heated sintering and their mechanical properties[J]. Metals and Materials International200813:39-45.
[27]
KANG D S WOO K D KWON E P, et al. Fabrication of nanostructured WC-based hard materials with different contents of Co by high frequency induction heated sintering[J]. Surface Review and Letters201017:251-255.
[28]
SHON I J. Rapid consolidation of nanostructured WC-FeAl hard composites by high-frequency induction heating and its mechanical properties[J]. International Journal of Refractory Metals & Hard Materials201661:185-191.
[29]
KIM H C SHON I J MUNIR Z. A Rapid sintering of ultra-fine WC-10wt.%Co by high-frequency induction heating[J]. Journal of Materials Science200540:2849-2854.
[30]
DENG X C KANG X D ZHANG G H. Effects of carbothermal prereduction temperature and Co content on mechanical properties of WC-Co cemented carbides[J]. International Journal of Applied Ceramic Technology202320:2536-2547.
[31]
YANG X H WANG K F CHOU K C, et al. Preparation of low binder WC-Co-Ni cemented carbides with fine WC grains and homogeneous distribution of Co/Ni[J]. Materials Today Communication202230:103081.
[32]
ZHAO Z D WANG K W HU Y J. Microstructure and properties of coarse WC-10CoCrFeMnNi cemented carbide by mechanical alloying and hot pressing sintering[J]. Materials Today Communications202337:107137.
[33]
NINO A NAKAIBAYASHI Y SUGIYAMA S, et al. Effect of Mo2C addition on the microstructures and mechanical properties of WC-SiC ceramics[J]. International Journal of Refractory Metals and Hard Materials201764: 35-39.
[34]
BONACHE V SALVADOR M D FERNANDEZ A, et al. Fabrication of full density near-nanostructured cemented carbides by combination of VC/Cr3C2 addition and consolidation by SPS and HIP technologies[J]. International Journal of Refractory Metals and Hard Materials201129:202-208.
[35]
LI M GONG M F CHENG Z L, et al. Novel WC-Co-Ti3SiC2 cemented carbide with ultrafine WC grains and improved mechanical properties[J]. Ceramics International202248:22335-22342.
[36]
ZHANG J J NIE W Y WEI X L, et al. Microstructure and properties of in situ La2O3 and SiC co-doped WC-10wt.%Ni cemented carbides prepared by microwave sintering[J]. Ceramics International202046: 28013-28024.
[37]
CHEN W Y YIN Z B LI X L, et al. Effect of co-doped additives on microstructure and mechanical properties of microwave-sintered WC-10Co cemented carbide tool materials[J]. Journal of Alloys and Compounds2023962:171148.
[38]
GHASALI E OROOJI Y TAHAMTAN H, et al. The effects of metallic additives on the microstructure and mechanical properties of WC-Co cermets prepared by microwave sintering[J]. Ceramics International202046:29199-29206.
[39]
SONG X Y GAO Y LIU X M, et al. Effect of interfacial characteristics on toughness of nanocrystalline cemented carbides[J]. Acta Materialia201361:2154-2162.
[40]
JIANG H ZHAO Z W QIAN Y J, et al. Effects of nanocomposite grain growth inhibitors and multi-walled carbon nanotubes on the microstructure and mechanical properties of ultrafine cemented carbides[J]. Journal of Materials Research and Technology202326:3054-3069.
[41]
郭圣达,鲍瑞,易健宏,等. SPS制备含钼WC-6Co硬质合金的工艺性能[J]. 中国有色金属学报201828(3):556-564.
GUO S D BAO R YI J H, et al. Effects of SPS sintering parameters on microstructure and properties of WC-6Co cemented carbides with Mo addition[J]. The Chinese Journal of Nonferrous Metals201828(3):556-564.
[42]
KIM H C OH D Y SHON I J. Sintering of nanophase WC-15vol.%Co hard metals by rapid sintering process[J]. International Journal of Refractory Metals and Hard Materials200422:197-203.
[43]
陈慧.晶粒长大抑制剂对超细WC-Co硬质合金性能的影响[D]. 成都:西华大学,2011.
CHEN H. Effect of inhibitors on properties of ultra-fine WC-Co cemented carbides[D]. Chengdu: Xihua University, 2011.
[44]
黄公治,尹超,蒋甘澍. 碳化物抑制剂在硬质合金中的应用与研发现状[J]. 硬质合金202340(2):147-157.
HUANG G Z YIN C JIANG G P. Application and research status of carbide inhibitors in cemented carbides[J]. Cemented Cabides202340(2):147-157.
[45]
FARAG S KONYASHIN I RIES B. The influence of grain growth inhibitors on the microstructure and properties of submicron, ultrafine and nano-structured hardmetals-a review[J]. International Journal of Refractory Metals and Hard Materials201877:12-30.
[46]
Al-AQEELI N. Characterization of nano-cemented carbides Co-doped with vanadium and chromium carbides[J]. Powder Technology2015273:47-53.
[47]
EGAMI A EHIRA M MACHIDA M. Morphology of vanadium carbide in submicron hardmetals[J]. R and D: Research and Development Kobe Steel Engineering Reports199444:63-66.
[48]
HENJERED A HELLSING M ANDREN H O, et al. Quantitative microanalysis of carbide/carbide interfaces in WC-Co-base cemented carbides[J]. Mater Sci Technol19862:847.
[49]
SUZUKI H TOKUMOT K. Microstructures and mechanical properties of WC-Cr3C2-15%Co cemented carbide[J]. Journal of the Japan Society of Powder and Powder Metallurgy198431:56-59.
[50]
YAMAMOTO T IKUHARA Y WATANABE T, et al. High resolution microscopy study in Cr3C2-doped WC-Co[J]. Journal of Materials Science200136(16): 3885-3890.
[51]
KAWAKAMI M KITAMURA K. Segregation layers of grain growth inhibitors at WC/WC interfaces in VC-doped submicron-grained WC-Co cemented carbides[J]. International Journal of Refractory Metals and Hard Materials201552:229-234.
[52]
ZHONG Y SHAW L L. Growth mechanisms of WC in WC-5.75wt.%Co[J]. Ceramics International201137:3591-3597.
[53]
CHEN H YANG Q M YANG J G, et al. Effects of VC/Cr3C2 on WC grain morphologies and mechanical properties of WC-6wt.%Co cemented carbides[J]. Journal of Alloys and Compounds2017714:245-250.
[54]
TANG X Q WANG Z H HUANG L, et al. Preparation, properties and microstructure of high hardness WC-Co cemented carbide tool materials for ultra-precision machining[J]. International Journal of Refractory Metals & Hard Materials2023116: 106356.
[55]
LI X K WANG L LIU Y, et al. Enhanced high temperature mechanical properties of WC-Co cemented carbides by VC addition[J]. International Journal of Refractory Metals and Hard Materials2023116: 106355.
[56]
PENG C TANG H LIANG P J, et al. Spark plasma sintering of WC-VC0.5 composites with exceptional mechanical properties and high-temperature performance[J]. Materials Science and Engineering: A2022831:142360.
[57]
WU Y C LU Z Y QIN Y Q, et al. Ultrafine/nano WC-Co cemented carbide: overview of preparation and key technologies[J]. Journal of Materials Research and Technology202327:5822-5839.
[58]
JING K F GUO Z X HUA T, et al. Strengthening mechanism of cemented carbide containing Re[J]. Materials Science and Engineering: A2022838:142803.
[59]
YANG Y LUO L M ZAN X, et al. Synthesis of Y2O3-doped WC-Co powders by wet chemical method and its effect on the properties of WC-Co cemented carbide alloy[J]. International Journal of Refractory Metals & Hard Materials202092:105324.
[60]
DENG X C ZHANG H ZHANG G H. Effect of CeO2 and VC co-doping on the microstructure and properties of WC-10Co cemented carbide[J]. International Journal of Refractory Metals and Hard Materials2022108:105938.
[61]
BAI T XIE T T. Fabrication and mechanical properties of WC-Al2O3 cemented carbide reinforced by CNTs[J]. Materials Chemistry and Physics2017201:113-119.
[62]
ZHAO Z W ZHANG G G WANG S, et al. Preparation of ultrafine cemented carbides with uniform structure and high properties by microwave sintering[J]. Materials Letters2020260:126971.
[63]
SUN J L HUANG Z F ZHAO J. High-hard and high-tough WC-TiC-Co cemented carbide reinforced with graphene[J]. Materials Today Communications202129:102841.
[64]
HEZAVEH T MOAZAMI-GOUDARZI M KAZEMI A. Effects of GNP on the mechanical properties and sliding wear of WC-10wt.%Co cemented carbide[J]. Ceramics International202147:18020-18029.
[65]
QI W Z ZHAO Z W QIAN Y J, et al. Effect of graphene on the microstructure and mechanical properties of WC-based cemented carbide[J]. Crystals202313:1414.
[66]
TIAN H X PENG Y B DU Y, et al. Thermodynamic calculation designed compositions, microstructure and mechanical property of ultra-fine WC-10Co-Cr3C2-TaC cemented carbides[J]. International Journal of Refractory Metals and Hard Materials201769:11-17.
[67]
王雷. 超细WC-10Co硬质合金的制备及组织结构和性能[D]. 哈尔滨: 哈尔滨工业大学, 2011.
WANG L. Preparation and microstructures and properties of ultra-fine WC-10Co cemented carbides[D]. Harbin: Harbin Institute of Technology, 2011.
[68]
XU G Z LIU R YANG Q M, et al. Synthesis of WC-0.67wt.%Cr3C2 nanopowders by a one-step reduction-carbonization method and their characterization[J]. Ceramics International202248:22718.
[69]
WANG K F YANG X H DENG X C, et al. Enhancement of the mechanical properties of ultrafine-grained WC-Co cemented carbides via the in-situ generation of VC[J]. Journal of Alloys and Compounds2022903:163961.

基金

国家自然科学基金资助项目(52274362)
河南省重点研发专项资助项目(221111230800)

评论

PDF(6333 KB)

Accesses

Citation

Detail

段落导航
相关文章

/