
超细/纳米WC-Co硬质合金的烧结方式和晶粒抑制剂研究进展
刘家颖, 赵志伟, 高子梅, 江浩
超细/纳米WC-Co硬质合金的烧结方式和晶粒抑制剂研究进展
Research progress in sintering methods and grain inhibition of ultrafine/nano WC-Co cemented carbide
WC-Co硬质合金具有较高硬度、强度、耐磨性等性能而广泛应用于各种工业领域。相比于常规硬质合金,超细/纳米硬质合金的综合性能大大提升。制备超细/纳米硬质合金的关键在于抑制WC晶粒在烧结过程中的长大。本文从制备硬质合金的烧结方式和晶粒抑制剂两个方面探讨了抑制WC晶粒生长的关键因素及研究现状;介绍了常规烧结方式与快速烧结方式的优缺点;比较了不同烧结方式所制备硬质合金的晶粒尺寸与性能;介绍了其他增韧填料的抑制和增强作用、晶粒抑制剂的作用机理和复合晶粒抑制剂的优势。最后对制备超细/纳米硬质合金的快速烧结方式以及复合晶粒抑制剂提出了展望。快速烧结方式可以和计算机模拟相结合,促进快速烧结方式的广泛应用;复合晶粒抑制剂的种类、添加方式等需要进一步探索。
WC-Co cemented carbides are widely used in various industrial fields because of their high hardness, strength, wear resistance, and other properties. Compared with conventional cemented carbides, the comprehensive properties of ultrafine/nano cemented carbides are greatly improved. The key to preparing ultrafine/nano-cemented carbides is inhibiting the growth of WC grains in the sintering process. In this study, the key factors inhibiting WC grain growth and the research status worldwide are discussed from two aspects of sintering methods and grain growth inhibitors for preparing cemented carbides. The advantages and disadvantages of the conventional sintering method and rapid sintering method are introduced, and the grain size and properties of cemented carbide prepared by different sintering methods are compared. The inhibition and reinforcement of other toughening fillers, the mechanism of grain inhibitors, and the advantages of composite grain inhibitors are introduced. Finally, the rapid sintering method and the composite grain inhibitors for preparing ultrafine/nano cemented carbides are proposed. The rapid sintering method can be combined with computer simulation to promote its wide application, and the types and adding methods of composite grain inhibitors require furthur exploration.
超细/纳米硬质合金 / 烧结方式 / 晶粒抑制剂 / 晶粒生长
ultrafine/nano cemented carbide / sintering method / grain growth inhibitor / grain growth
TG125.3
[1] |
|
[2] |
|
[3] |
于淞百, 蒋豪丽, 闵凡路, 等. 超细WC和细WC/Co添加对WC-10Co硬质合金微观结构与力学性能的影响[J]. 材料工程, 2023, 51(7): 136-145.
|
[4] |
|
[5] |
余顺仕, 陈松, 李广慧, 等. WC/Co硬质合金界面特征分布[J]. 材料工程, 2024, 52(7): 204-213.
|
[6] |
廖宇, 张钱伟, 胡启明. 硬质合金中Co相强化的研究现状与展望[J]. 材料工程, 2024, 52(7): 109-119.
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
程鑫.自蔓延燃烧超快速合成Cu2SnSe3基化合物及其热电性能研究[D]. 武汉:武汉理工大学,2019.
|
[12] |
|
[13] |
|
[14] |
|
[15] |
何伟锋, 杨宇辉, 王珂玮, 等. 真空烧结温度对WC-Co硬质合金微观组织及性能的影响[J]. 热加工工艺, 2023, 52:72-77.
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
赵海锋,朱丽慧,黄清伟. 放电等离子技术快速烧结纳米WC-10%Co-0.8%VC硬质合金[J]. 稀有金属材料与工程, 2005, 34(1):82-85.
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
郭圣达,鲍瑞,易健宏,等. SPS制备含钼WC-6Co硬质合金的工艺性能[J]. 中国有色金属学报, 2018, 28(3):556-564.
|
[42] |
|
[43] |
陈慧.晶粒长大抑制剂对超细WC-Co硬质合金性能的影响[D]. 成都:西华大学,2011.
|
[44] |
黄公治,尹超,蒋甘澍. 碳化物抑制剂在硬质合金中的应用与研发现状[J]. 硬质合金, 2023,40(2):147-157.
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
[67] |
王雷. 超细WC-10Co硬质合金的制备及组织结构和性能[D]. 哈尔滨: 哈尔滨工业大学, 2011.
|
[68] |
|
[69] |
|
/
〈 |
|
〉 |