钠离子电池正极材料技术路线及产业现状

吴凡, 魏鹏, 吴韶杨, 梁康, 李建斌, 任玉荣

PDF(5676 KB)
PDF(5676 KB)
材料工程 ›› 2025, Vol. 53 ›› Issue (7) : 15-28. DOI: 10.11868/j.issn.1001-4381.2024.000211
钠离子电池产业化专栏

钠离子电池正极材料技术路线及产业现状

作者信息 +

Technical route and industrial status of positive electrode materials for sodium-ion batteries

Author information +
History +

摘要

近年来钠离子电池已成为全世界的研究热点,并逐步走向产业化。然而它们在性能上仍存在不足,包括相变、结构退化和电压平台等问题。因此,研究开发性能更加优异的正极材料对钠离子电池的容量和能量密度起着至关重要的作用。本文详细介绍了主要的3类钠离子电池正极材料:过渡金属氧化物、聚阴离子以及普鲁士蓝,分别阐明了各类材料在不同领域的优势,以及目前仍存在的一些局限性,同时列举了一系列目前已经证实可以用来解决钠离子电池容量低、能量密度低等缺点的改进方法和手段。此外又通过调研各公司对钠离子电池正极材料的投资和布局,分析了目前3种体系的产业化路线和发展现状并对目前的总体研究进展和未来发展方向做出了总结和讨论。未来钠离子电池随着基础研发的逐渐完善,工业化程度逐步加深,有望逐步走进日常生活中。

Abstract

In recent years,sodium-ion batteries have become a research hotspot in the world and are gradually moving toward industrialization. However,they still have shortcomings,including phase transition,structural degradation,and voltage plateau. Therefore,the development of positive electrode materials with better performance plays a crucial role in the capacity and energy density of sodium-ion batteries. This paper meticulously introduces three primary categories of positive electrode materials for sodium-ion batteries: transition metal oxides,polyanions,and Prussian blue. It elucidates the unique advantages of each material in diverse applications,acknowledges their inherent limitations,and presents a range of improvement strategies to address the challenges of low capacity and energy density. Additionally,by examining the investment trends and industrial layouts of sodium-ion battery positive electrode materials,this study analyzes the industrialization pathways and current development statuses of these three systems,summarizing the latest research advancements. Therefore,it is anticipated that with the ongoing maturation of theoretical foundations and industrial advancements,sodium-ion batteries will rapidly develop,and gradually integrate into daily life.

关键词

钠离子电池 / 正极 / 产业 / 过渡金属氧化物 / 聚阴离子 / 普鲁士蓝

Key words

sodium-ion battery / positive electrode / industry / transition metal oxide / polyanion / Prussian blue

中图分类号

TB34 / TM912

引用本文

导出引用
吴凡 , 魏鹏 , 吴韶杨 , . 钠离子电池正极材料技术路线及产业现状. 材料工程. 2025, 53(7): 15-28 https://doi.org/10.11868/j.issn.1001-4381.2024.000211
Fan WU, Peng WEI, Shaoyang WU, et al. Technical route and industrial status of positive electrode materials for sodium-ion batteries[J]. Journal of Materials Engineering. 2025, 53(7): 15-28 https://doi.org/10.11868/j.issn.1001-4381.2024.000211

参考文献

[1]
WANG H GAO X ZHANG S, et al.High-entropy Na-deficient layered oxides for sodium-ion batteries[J]. ACS Nano202317 (13): 12530-12543.
[2]
WANG X REN L WANG Y, et al. A strategy to enhance rate capability by doping titanium into Na2FeP2O7@C cathode materials for Na-ion batteries[J]. Journal of Power Sources2023557: 232533.
[3]
XU H MA J HE X, et al. Single-crystalline Mg-substituted Na4Mn3(PO42P2O7 nanoparticles as a high capacity and superior cycling cathode for sodium-ion batteries[J]. Nanoscale202315: 4830-4838.
[4]
YANG A HUANG X LUO C, et al. High-rate-capacity cathode based on Zn-doped and carbonized polyacrylonitrile-coated Na4MnV(PO43 for sodium-ion batteries[J].ACS Applied Materials & Interfaces202315(18): 22132-22141.
[5]
ZHANG B CHEN G YANG Y, et al. Heterovalent chromium-doped Na3Fe2(PO4)P2O7 cathode material with superior rate and stability performance for sodium-ion storage[J]. ACS Sustainable Chemistry & Engineering202311(27): 10083-10094.
[6]
彭晨熹,刘军.钠离子电池层状过渡金属氧化物正极材料的研究进展[J].无机盐工业202355(10): 1-12.
PENG C X, LIU J, Research progress of layered transition metal oxide cathode materials for sodium ion batteries[J]. The inorganic salt industry202355(10): 1-12.
[7]
LI J LI Z TANG S, et al. Boosted electrochemical performance of Na3V2(PO43 at low temperature through synergistical F substitution and construction of interconnected nitrogen-doped carbonaceous network[J]. Journal of Materials Science & Technology2023150: 159-167.
[8]
LIANG H LIU H GUO J . et al. Self-purification and silicon-rich interphase achieves high-temperature (70 ℃) sodium-ion batteries with nonflammable electrolyte[J]. Energy Storage Materials202466: 103230.
[9]
BAI Z YAO Q WANG Met al. Low-temperature sodium-ion batteries: challenges and progress[J]. Advanced Energy Materials202414: 2303788.
[10]
韩富娟, 常增花, 赵金玲, 等. 高镍三元锂离子电池低温放电性能研究进展[J]. 材料工程202250(9): 1-17.
HAN F J CHANG Z H ZHAO J L, et al. Research progress in low-temperature discharge performance of Ni-rich ternary lithium-ion batteries[J]. Journal of Materials Engineering202250(9): 1-17.
[11]
CAO Z ZHU G ZHANG R, et al. Biological phytic acid guided formation of monodisperse large-sized carbon@LiFePO4/graphene composite microspheres for high-performance lithium-ion battery cathodes[J]. Chemical Engineering Journal2018351: 382-390.
[12]
HOU Y CHANG K WANG Z, et al. Rapid microwave-assisted refluxing synthesis of hierarchical mulberry-shaped Na3V2(PO42O2F@C as high performance cathode for sodium & lithium-ion batteries[J]. Science China Materials201962: 474-486.
[13]
WANG H LIU Q LIU Y Multi-ion doped P 2 /O3 biphasic layered oxides cathodes Na x Ni0.2Mn0.55Cu0.14Ti y Zn z O2 for sodium-ion batteries[J]. Journal of Alloys and Compounds, 2023, 962: 171053.
[14]
吕奕菊, 梁勇清, 谭家栩, 等. 改性水系钠离子电极材料Na3V2(PO43的制备及性能[J]. 材料工程202351(9): 158-166.
LYU Y J LIANG Y Q TAN J X, et al. Preparation and properties of modified aqueous sodium-ion electrode material Na3V2(PO43 [J]. Journal of Materials Engineering202351(9): 158-166.
[15]
王瑞琦,牟连山,尚永健,等. 钠离子电池产业化进展[J].盐湖研究202432(2): 72-79.
WANG R Q MOU L S SHANG Y J,et al. Industrial progress of the sodium ion batteries[J]. Journal of Salt Lake Research202432(2): 72-79.
[16]
黄登甲,陈钼.钠离子电池关键材料技术研究[J].信息记录材料202324(6): 14-16.
HUANG D J, CHEN M, Research on key material technology of sodium-ion battery [J]. Information recording materials202324(6): 14-16.
[17]
ZHAO L N ZHANG T ZHAO H L, et al. Polyanion-type electrode materials for advanced sodium-ion batteries[J]. Materials Today Nano202010: 100072.
[18]
DING F ZHAO C XIAO D, et al. Using high-entropy configuration strategy to design Na-ion layered oxide cathodes with superior electrochemical performance and thermal stability[J]. Journal of the American Chemical Society2022144(18) : 8286-8295.
[19]
ANANG D A PARK J H BHANGE D S, et al. O3-type layer-structured Na0.8[Ni1/5Fe1/5Co1/5Mn1/5Ti1/5]O2 as long life and high power cathode material for sodium-ion batteries[J]. Ceramics International201945(17): 23164-23171 .
[20]
LIN C C LIU H Y KANG J W, et al. In-situ X-ray studies of high-entropy layered oxide cathode for sodium-ion batteries[J]. Energy Storage Materials202251: 159-171.
[21]
TIAN K HE H LI X, et al. Boosting electrochemical reaction and suppressing phase transition with a high-entropy O3-type layered oxide for sodium-ion batteries[J]. Journal of Materials Chemistry A202210(28): 14943-14953.
[22]
WALCZAK K PLEWA A GHICA C, et al. NaMn0.2Fe0.2Co0.2Ni0.2Ti0.2O2 high-entropy layered oxide-experimental and theoretical evidence of high electrochemical performance in sodium batteries[J]. Energy Storage Materials202247: 500-514.
[23]
ZHONG W T HUANG Q H ZHENG F H, et al. Structural insight into the abnormal capacity of a Co-substituted tunnel-type Na0.44MnO2 cathode for sodium-ion batteries [J]. ACS Applied Materials & Interfaces202012(42): 47548-47555.
[24]
JOSHI A CHAKRABORTY S AKELLA S H, et al. High-entropy Co-free O3-type layered oxyfluoride: a promising air-stable cathode for sodium-ion batteries[J]. Advanced Materials202335: 2304440.
[25]
KANG J ZHU L TENG F Y, et al. High-rate performance and super long-cycle stability of Na3V2(PO43 cathode material coated by diatomic doped carbon[J]. Rare Metals202342: 1570-1582.
[26]
LI J CHEN Y SHI H, et al. One step in-situ synthesis of Na3V2(PO43/Na3V3(PO44 biphase coexisted cathode with high energy density by inducing of polyvinylpyrrolidone for sodium ion batteries[J]. Journal of Power Sources2023562: 232802.
[27]
容晓晖, 陆雅翔, 戚兴国, 等钠离子电池 :从基础研究到工程化探索[J]. 储能科学与技术20209(2): 515-522.
RONG X H LU Y X QI X G, et al. Na-ion batteries: from fundamental research to engineering exploration[J]. Energy Storage Science and Technology20209(2): 515-522.
[28]
LIU Y FANG X ZHANG A, et al. Layered P2-Na2/3[Ni1/3Mn2/3]O2 as high-voltage cathode for sodium-ion batteries: the capacity decay mechanism and Al2O3 surface modification[J]. Nano Energy201627: 27-34.
[29]
LIU H XU J MA C, et al. A new O3-type layered oxide cathode with high energy/power density for rechargeable Na batteries[J]. Chemical Communications201551: 4693-4696.
[30]
孙媛媛,李思卿,王成儒,等.钠离子电池层状过渡金属氧化物正极材料的研究进展[J].稀有金属202246(6): 776-795.
SUN Y Y LI S Q WANG C R, et al. Research progress of layered transition metal oxide cathode materials for sodium ion batteries [J]. Rare Metals202246 (6): 776-795.
[31]
ZHAO L YU L WAN G, et al. Co-manipulation of ultrafine nanostructure and uniform carbon layer activates maricite-structured NaFePO4 as a high-performance cathode for sodium-ion batteries [J]. Small Science20233: 2300122.
[32]
CASAS-CABANAS M RODDATIS V V SAUREL D, et al. Crystal chemistry of Na insertion/deinsertion in FePO4-NaFePO4 [J]. Journal of Materials Chemistry201222 (34): 17421-17423.
[33]
JEONG S KIM B H PARK Y D, et al. Artificially coated NaFePO4 for aqueous rechargeable sodium-ion batteries[J]. Journal of Alloys and Compounds2019784: 720-726.
[34]
KLEE R ARAGÓN M J ALCÁNTARA R, et al. High-performance Na3V2(PO43/C cathode for sodium-ion batteries prepared by a ball-milling-assisted method[J]. European Journal of Inorganic Chemistry20162016: 3212-3218.
[35]
LI H BI X BAI Y, et al., High-rate, durable sodium-ion battery cathode enabled by carbon-coated micro-sized Na3V2(PO43 particles with interconnected vertical nanowalls[J]. Advanced Materials Interfaces20163(9): 1500740.
[36]
LIANG J, FAB K, WEI Z, et al. Porous NaTi2(PO43@C nanocubes as improved anode for sodium-ion batteries[J]. Materials Research Bulletin201899: 343-348.
[37]
JIN T LIU Y LI Y, et al. Electrospun NaVPO4F/C nanofibers as self-standing cathode material for ultralong cycle life Na-ion batteries[J]. Advanced Energy Materials20177(15): 170087.
[38]
CAO Y LI X L DONG X, et al. Pilot-scale synthesis sodium iron fluorophosphate cathode with high tap density for a sodium pouch cell[J]. Small202218(45): 2204830.
[39]
ZHAO C D GUO J Z GU Z Y, et al. Robust three-dimensional carbon conductive network in a NaVPO4F cathode used for superior high-rate and ultralong-lifespan sodium-ion full batteries[J]. Journal of Materials Chemistry A20208(34): 17454-17462.
[40]
LI J KUANG Q WEN N, et al. Dual-carbon decorated Na3Mn2(P2O7)(PO4) nanocomposite via freeze drying: a zero-strain cathode material for sodium ion batteries[J]. Journal of Power Sources2022521: 230927.
[41]
LI X ZHANG Y ZHANG B, et al. Mn-doped Na4Fe3(PO42(P2O7) facilitating Na+ migration at low temperature as a high performance cathode material of sodium ion batteries[J]. Journal of Power Sources2022521: 230922.
[42]
BEN Y H ESSEHLI R AMIN R, et al. Sodium intercalation in the phosphosulfate cathode NaFe2(PO4)(SO42 [J]. Journal of Power Sources2018382: 144-151.
[43]
ARCELUS O NIKOLAEV S CARRASCO J, et al. Magnetism of NaFePO4 and related polyanionic compounds[J]. Physical Chemistry Chemical Physics201820(19): 13497-13507.
[44]
ALI G, LEE J H Susanto D, et al. Polythiophene-wrapped olivine NaFePO4 as a cathode for Na-ion batteries[J]. ACS Applied Materials & Interfaces20168(24):15422-15429.
[45]
WANG R WU S ZHANG F, et al. Stabilizing the crystal structures of NaFePO4 with Li substitutions[J]. Physical Chemistry Chemical Physics202022(25): 13975-13980.
[46]
BARKER J SWOYER J SAÏDI M Y, A sodium-ion cell based on the fluorophosphate compound NaVPO 4 F[J]. Electrochemical and Solid-State Letters. 2006, 160: A1-A4.
[47]
LIU X GONG H HAN C, et al. Barium ions act as defenders to prevent water from entering Prussian blue lattice for sodium-ion battery[J]. Energy Storage Materials202357: 118-124.
[48]
HUANG Y ZHANG X JI L, et al. Boosting the sodium storage performance of Prussian blue analogs by single-crystal and high-entropy approach[J]. Energy Storage Materials202358: 1-8.
[49]
YUE J L YIN W W CAO M H, et al. A quinary layer transition metal oxide of NaNi1/4Co1/4Fe1/4Mn1/8Ti1/8O2 as a high-rate-capability and long-cycle-life cathode material for rechargeable sodium ion batteries[J]. Chemical Communications201551: 15712-15715.
[50]
DENG J LUO W B LU X, et al. High energy density sodium-ion battery with industrially feasible and air-stable O3-type layered oxide cathode[J]. Advanced Energy Materials20178(5): 1701610.
[51]
YU C YANG L SUN S, et al. Enhanced Na-storage properties of O3-type NaNi0.5Mn0.5O2 cathodes by doping and coating dual-modification strategy[J]. Ceramics International202248 (24): 36715-36722.
[52]
YANG Y DANG R WU K, et al. Semiconductor material ZnO-coated P2-type Na2/3Ni1/3Mn2/3O2 cathode materials for sodium-ion batteries with superior electrochemical performance[J]. The Journal of Physical Chemistry C2019124(3): 1780-1787.
[53]
LUO X HUANG Q FENG Y, et al. Constructing a composite structure by a gradient Mg2+ doping strategy for high-performance sodium-ion batteries[J]. ACS Applied Materials & Interfaces202246: 51846-51854.
[54]
LIU J ZHOU J ZHAO Z, et al. Deciphering the formation process and electrochemical behavior of novel P2/O3 biphasic layered cathode with long cycle life for sodium-ion batteries[J]. Journal of Power Sources 2023560: 232686.
[55]
ZHANG Y CHEN J WANG R, et al. P2/O3 biphasic cathode material through magnesium substitution for sodium-ion batteries[J]. ACS Applied Materials & Interfaces202416(9): 11349-11360.
[56]
CAI C LIU Q HU Z, et al. Construction of superior performance Na3V2- x Cr x (PO42F3/C cathode by homovalent doping strategy toward enhanced sodium ion storage[J]. Journal of Power Sources2023571: 233080.
[57]
LIU X LI M YANG X, et al. Carbon encapsulation and chlorine doping enable Na3V2(PO43 superior sodium ion storage properties as cathode material for sodium ion battery[J]. Powder Technology 2020364: 70-77.
[58]
LU T YU X LI X, et al. Zwitterionic polymer-derived nitrogen and sulfur co-doped carbon-coated Na3V2(PO42F3 as a cathode material for sodium ion battery energy storage[J]. New Journal of Chemistry202145 (41):19391-19401.
[59]
JIANG Y ZHOU X LI D, et al. Highly reversible Na storage in Na3V2(PO43 by optimizing nanostructure and rational surface engineering[J]. Advanced Energy Materials20188(16): 1800068.
[60]
WAN M ZENG R MENG J, et al. Post-synthetic and in situ vacancy repairing of iron hexacyanoferrate toward highly stable cathodes for sodium-ion batteries[J]. Nano-Micro Letters202214: 9.
[61]
LIU L XIAO W GUO J, et al. Nanocomposite LiFePO4·Li3V2(PO43/C synthesized by freeze-drying assisted sol-gel method and its magnetic and electrochemical properties[J]. Science China Materials201761: 39-47.
[62]
CHEN M HUA W XIAO J, et al. NASICON-type air-stable and all-climate cathode for sodium-ion batteries with low cost and high-power density[J]. Nature Communications201910(1): 1480.
[63]
DING H HE X TAO Q, et al. N-doped carbon-layer-modified Na3V2(PO43 as a high-performance cathode material for sodium-ion batteries[J]. Energy & Fuels202236(17): 10384-10394.
[64]
KIM H PARK I SEO D H, et al. New iron-based mixed-polyanion cathodes for lithium and sodium rechargeable batteries: combined first principles calculations and experimental study[J]. Journal of the American Chemical Society2012134(25): 10369-10372.
[65]
CAO Y YANG C LIU Y, et al. A new polyanion Na3Fe2(PO4)P2O7 cathode with high electrochemical performance for sodium-ion batteries[J]. ACS Energy Letters20205(12): 3788-3796.
[66]
ZHAO A YUAN T LI P, et al. A novel Fe-defect induced pure-phase Na4Fe2.91(PO42P2O7 cathode material with high capacity and ultra-long lifetime for low-cost sodium-ion batteries[J]. Nano Energy202291: 106680.
[67]
CHEN M CORTIE D HU Z, et al. A novel graphene oxide wrapped Na2Fe2(SO43/C cathode composite for long life and high energy density sodium-ion batteries[J]. Advanced Energy Materials20188(27): 1800944.
[68]
NI Q BAI Y WU F, et al. Polyanion-type electrode materials for sodium-ion batteries[J].Advanced Science20174(3):1600275.
[69]
JIANG Y ZHOU Y CHU D, et al. Ionic liquid-assisted Prussian blue for stable sodium-ion battery cathodes[J]. ACS Applied Energy Materials20225(6): 7822-7829.
[70]
WANG W GANG Y HU Z, et al. Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion batteries[J]. Nature Communications202011: 980.
[71]
HU P PENG W WANG B, et al. Concentration-gradient Prussian blue cathodes for Na-ion batteries[J]. ACS Energy Letters20205(1): 100-108.
[72]
LI Q Y XU C LIANG Y R, et al. Reforming magnet waste to Prussian blue for sustainable sodium-ion batteries[J]. ACS Applied Materials & Interfaces202214(42): 47747-47757.
[73]
JIANG M HOU Z WANG J,et al. Balanced coordination enables low-defect Prussian blue for superfast and ultrastable sodium energy storage[J].Nano Energy2022102: 107708.
[74]
CHEN Y C WOO H J FADZIL S A F S M, et al. Cage-like porous Prussian blue as high-capacity cathode for sodium-ion batteries[J]. ACS Applied Nano Materials 20225(4): 4833-4840.

基金

国家自然科学基金区域重点项目(U22A20420)

评论

PDF(5676 KB)

Accesses

Citation

Detail

段落导航
相关文章

/