
钠离子电池正极材料技术路线及产业现状
吴凡, 魏鹏, 吴韶杨, 梁康, 李建斌, 任玉荣
钠离子电池正极材料技术路线及产业现状
Technical route and industrial status of positive electrode materials for sodium-ion batteries
近年来钠离子电池已成为全世界的研究热点,并逐步走向产业化。然而它们在性能上仍存在不足,包括相变、结构退化和电压平台等问题。因此,研究开发性能更加优异的正极材料对钠离子电池的容量和能量密度起着至关重要的作用。本文详细介绍了主要的3类钠离子电池正极材料:过渡金属氧化物、聚阴离子以及普鲁士蓝,分别阐明了各类材料在不同领域的优势,以及目前仍存在的一些局限性,同时列举了一系列目前已经证实可以用来解决钠离子电池容量低、能量密度低等缺点的改进方法和手段。此外又通过调研各公司对钠离子电池正极材料的投资和布局,分析了目前3种体系的产业化路线和发展现状并对目前的总体研究进展和未来发展方向做出了总结和讨论。未来钠离子电池随着基础研发的逐渐完善,工业化程度逐步加深,有望逐步走进日常生活中。
In recent years,sodium-ion batteries have become a research hotspot in the world and are gradually moving toward industrialization. However,they still have shortcomings,including phase transition,structural degradation,and voltage plateau. Therefore,the development of positive electrode materials with better performance plays a crucial role in the capacity and energy density of sodium-ion batteries. This paper meticulously introduces three primary categories of positive electrode materials for sodium-ion batteries: transition metal oxides,polyanions,and Prussian blue. It elucidates the unique advantages of each material in diverse applications,acknowledges their inherent limitations,and presents a range of improvement strategies to address the challenges of low capacity and energy density. Additionally,by examining the investment trends and industrial layouts of sodium-ion battery positive electrode materials,this study analyzes the industrialization pathways and current development statuses of these three systems,summarizing the latest research advancements. Therefore,it is anticipated that with the ongoing maturation of theoretical foundations and industrial advancements,sodium-ion batteries will rapidly develop,and gradually integrate into daily life.
钠离子电池 / 正极 / 产业 / 过渡金属氧化物 / 聚阴离子 / 普鲁士蓝
sodium-ion battery / positive electrode / industry / transition metal oxide / polyanion / Prussian blue
TB34 / TM912
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
彭晨熹,刘军.钠离子电池层状过渡金属氧化物正极材料的研究进展[J].无机盐工业, 2023, 55(10): 1-12.
PENG C X, LIU J, Research progress of layered transition metal oxide cathode materials for sodium ion batteries[J]. The inorganic salt industry, 2023, 55(10): 1-12.
|
[7] |
|
[8] |
|
[9] |
|
[10] |
韩富娟, 常增花, 赵金玲, 等. 高镍三元锂离子电池低温放电性能研究进展[J]. 材料工程, 2022, 50(9): 1-17.
|
[11] |
|
[12] |
|
[13] |
|
[14] |
吕奕菊, 梁勇清, 谭家栩, 等. 改性水系钠离子电极材料Na3V2(PO4)3的制备及性能[J]. 材料工程, 2023, 51(9): 158-166.
|
[15] |
王瑞琦,牟连山,尚永健,等. 钠离子电池产业化进展[J].盐湖研究,2024, 32(2): 72-79.
|
[16] |
黄登甲,陈钼.钠离子电池关键材料技术研究[J].信息记录材料, 2023, 24(6): 14-16.
HUANG D J, CHEN M, Research on key material technology of sodium-ion battery [J]. Information recording materials, 2023, 24(6): 14-16.
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
容晓晖, 陆雅翔, 戚兴国, 等钠离子电池 :从基础研究到工程化探索[J]. 储能科学与技术, 2020, 9(2): 515-522.
|
[28] |
|
[29] |
|
[30] |
孙媛媛,李思卿,王成儒,等.钠离子电池层状过渡金属氧化物正极材料的研究进展[J].稀有金属, 2022, 46(6): 776-795.
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
ALI G,
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
[68] |
|
[69] |
|
[70] |
|
[71] |
|
[72] |
|
[73] |
|
[74] |
|
/
〈 |
|
〉 |