
快充型钠离子电池非水电解液研究进展
汪书苹, 刘齐军, 李昌豪, 曾子琪, 章彬彬, 谢佳
快充型钠离子电池非水电解液研究进展
Research progress in non-aqueous electrolyte for fast-charging sodium-ion batteries
钠离子电池由于钠元素储量丰富、成本低廉以及与锂离子电池相似的工作原理而备受瞩目,在规模化储能领域展现出巨大的应用潜力。开发具有快速充放电能力的钠离子电池,可有力支撑规模储能的调频应用。电解液作为钠离子电池的关键组分在电极/电解液界面反应中扮演着重要角色,成为决定钠离子电池快充特性的关键因素。本文首先分析了钠离子电池中快充型电解液所面临的机遇和挑战。其次,从电解液的传输特性和电化学稳定性两方面着手,探讨了钠离子电池快充性能和电解液性质之间的密切关系。最后,基于不同溶剂体系,总结了快充型电解液的发展现状,提出一般性的设计策略。通过本文的综合分析,将为快速充放电能力的钠离子电池的研发提供有益的指导和启示。
Sodium-ion batteries have garnered significant attention owing to their abundant sodium reserves, cost-effectiveness, and operational principles akin to lithium-ion batteries, exhibiting immense potential for large-scale energy storage applications. The advancement of sodium-ion batteries with rapid charge-discharge capabilities can effectively cater to frequency modulation needs in large-scale energy storage systems. As a pivotal component, the electrolyte in sodium-ion batteries plays a crucial role in electrode/electrolyte interface reactions and significantly influences the fast-charging characteristics of these batteries. This paper delve into the opportunities and challenges associated with fast-charging electrolytes in sodium-ion batteries. Furthermore, we discuss the intimate relationship between the fast-charging performance of sodium-ion batteries and the properties of the electrolyte, focusing on the electrolyte’s transmission characteristics and electrochemical stability. Lastly, we summarize the current development status of fast-charging electrolytes based on various solvent systems and propose a general design strategy. The comprehensive analysis presented in this paper offers valuable insights and guidance for the research and development of sodium-ion batteries with rapid charge-discharge capabilities.
钠离子电池 / 规模储能 / 电解液 / 快充 / 界面反应
sodium ion batteries / scale energy storage / electrolyte / fast-charging / interfacial reaction
TM910.3
[1] |
|
[2] |
|
[3] |
张福明,王静,张鹏,等.有机电解液在钠离子电池中的研究进展[J].材料工程,2021,49(1):11-22.
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
NAGMANI,
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
[68] |
|
[69] |
|
[70] |
|
[71] |
|
[72] |
|
[73] |
|
[74] |
|
[75] |
|
[76] |
|
[77] |
|
[78] |
|
[79] |
|
[80] |
|
[81] |
|
[82] |
|
[83] |
|
[84] |
|
[85] |
|
[86] |
|
[87] |
|
[88] |
|
[89] |
|
/
〈 |
|
〉 |