Pt催化剂的不同碳载体对膜电极性能的影响

王珺, 杜真真, 于帆, 王旭东, 李炯利

PDF(4827 KB)
PDF(4827 KB)
材料工程 ›› 2025, Vol. 53 ›› Issue (6) : 198-209. DOI: 10.11868/j.issn.1001-4381.2024.000170
研究论文

Pt催化剂的不同碳载体对膜电极性能的影响

作者信息 +

Effect of different carbon supports of Pt catalyst on performance of membrane electrode assembly

Author information +
History +

摘要

不同碳载体载Pt催化剂对质子交换膜燃料电池膜电极性能的影响不同。本文分别制备石墨烯和Vulcan XC-72担载的Pt催化剂(Pt/G和Pt/C),对它们的形貌和物理特性进行表征,并作为膜电极阴极催化剂,通过极化曲线性能测试和阻抗测试探究Pt/G和Pt/C在不同I/C比下对膜电极性能的影响,以及不同Pt载量下Pt/G和Pt/C的性能变化趋势,并进行循环伏安曲线测试和加速耐久性测试,通过电化学活性面积和极化曲线性能的变化进一步评估不同碳载体载Pt催化剂在燃料电池操作环境下对膜电极稳定性的影响。结果表明,Pt/G和Pt/C最佳I/C比分别为0.5和0.6;随着Pt载量的升高,极化性能曲线均呈现先升高后降低的趋势,且均在0.8 mgPt/cm2时,达到最大值;Pt/G经历30000次三角波循环后,ECSA损失率为63%,峰值功率保有率高达60%,与Pt/C相比,石墨烯是稳定性优于无定形碳Vulcan XC-72的燃料电池膜电极催化剂载体。

Abstract

The effect of Pt catalysts with varied carbon supports on the performance of membrane electrode assembly (MEA) in proton exchange membrane fuel cell is different. In this study, graphene and Vulcan XC-72 supported Pt catalysts (Pt/G and Pt/C) are prepared respectively, and their morphology and physical properties are characterized. As cathode catalysts of MEA, the effects of Pt/G and Pt/C on the performance of MEA at varied I/C ratios are investigated by polarization curve performance test and electrochemical impedance spectroscopy test. The cyclic voltammetry curve test and accelerated stress test are carried out to further evaluate the influence of Pt catalysts with different carbon supports on the stability of MEA in the fuel cell operating environment through the changes in the electrochemical active surface area and polarization curve. The results show that the optimal I/C ratios of Pt/G and Pt/C are 0.5 and 0.6, respectively. With the increase of Pt loadings, the polarization curves show a trend of first increasing and then decreasing, and the maximum value is 0.8 mgPt/cm2. After 30000 triangular wave cycles, the ECSA loss rate of Pt/G is 63%, and the peak power retention rate is as high as 60%. Compared with Pt/C, graphene is a MEA catalyst carrier with better stability than amorphous carbon Vulcan XC-72.

关键词

膜电极 / Pt催化剂 / 质子交换膜 / 燃料电池 / 石墨烯 / 碳载体

Key words

membrane electrode / Pt catalyst / proton exchange membrane / fuel cell / graphene / carbon supports

中图分类号

TB34 / TK91

引用本文

导出引用
王珺 , 杜真真 , 于帆 , . Pt催化剂的不同碳载体对膜电极性能的影响. 材料工程. 2025, 53(6): 198-209 https://doi.org/10.11868/j.issn.1001-4381.2024.000170
Jun WANG, Zhenzhen DU, Fan YU, et al. Effect of different carbon supports of Pt catalyst on performance of membrane electrode assembly[J]. Journal of Materials Engineering. 2025, 53(6): 198-209 https://doi.org/10.11868/j.issn.1001-4381.2024.000170

参考文献

[1]
LI H ZHAO H TAO B,et al. Pt-based oxygen reduction reaction catalysts in proton exchange membrane fuel cells: controllable preparation and structural design of catalytic layer[J]. Nanomaterials202212(23):4173.
[2]
LI B XIE M WAN K,et al. A high-durability graphitic black pearl supported Pt catalyst for a proton exchange membrane fuel cell stack[J]. Membranes202212(3):301.
[3]
MEENAKSHI S SONKAR K CHUGH S,et al. Ex-situ and in-situ degradation studies of MEAs used in 1 kW PEM fuel cell stack[J]. International Journal of Hydrogen Energy202348(25):9426-9435.
[4]
XIA L NI M XU Q,et al. Optimization of catalyst layer thickness for achieving high performance and low cost of high temperature proton exchange membrane fuel cell[J]. Applied Energy2021294:117012.
[5]
ZHANG R MIN T CHEN L,et al. Pore-scale and multiscale study of effects of Pt degradation on reactive transport processes in proton exchange membrane fuel cells[J]. Applied Energy2019253:113590.
[6]
MARTINAIOU I MONTEVERDE V A H A WEIDLER N,et al. Activity and degradation study of an Fe-N-C catalyst for ORR in direct methanol fuel cell (DMFC)[J]. Applied Catalysis B: Environmental2020262:118217.
[7]
ZHAO J TU Z CHAN S H. Carbon corrosion mechanism and mitigation strategies in a proton exchange membrane fuel cell (PEMFC): a review[J]. Journal of Power Sources2021488:229434.
[8]
PAN F LI J GAO Y,et al. Performance degradation of 1 kW proton exchange membrane fuel cell stack using graphitized carbon supported Pt nanoparticle catalyst[J]. Journal of Power Sources2020477:228980.
[9]
MONHANTA P K RIPA M S REGNET F,et al. Impact of membrane types and catalyst layers composition on performance of polymer electrolyte membrane fuel cells[J]. ChemistryOpen20209(5):607-615.
[10]
XING L SHI W SU H,et al. Membrane electrode assemblies for PEM fuel cells: a review of functional graded design and optimization[J]. Energy2019177:445-464.
[11]
DESCHAMPS F L MAHY J G LONARD A F,et al. A practical method to characterize proton exchange membrane fuel cell catalyst layer topography: application to two coating techniques and two carbon supports[J]. Thin Solid Films2020695:137751.
[12]
SHAHGALDI S OZDEN A LI X,et al. A scaled-up proton exchange membrane fuel cell with enhanced performance and durability[J]. Applied Energy2020268:114956.
[13]
OTT S, BAUER A DU F,et al. Impact of carbon support meso porosity on mass transport and performance of PEMFC cathode catalyst layers[J]. ChemCatChem202113(22):4759-4769.
[14]
KUMAR MOHANTA P RIPA M S REGNET F,et al. Effects of supports BET surface areas on membrane electrode assembly performance at high current loads[J].Catalysts202111 (2):195.
[15]
MOHANTA P K REGNET F JORISSEN L. Impact of highly stable catalyst support materials on polymer electrolyte membrane fuel cell performance[J]. Energy Technology20208(6), 2000081.
[16]
黄海鹏. 催化剂碳载体对于燃料电池性能的影响研究[D].北京:北京化工大学,2022.
HUANG H P. Influence of catalyst carbon support on fuel cell performance[D]. Beijing: Beijing University of Chemical Technology,2022.
[17]
DEVRIM Y ALBOSTAN A. Graphene-supported platinum catalyst-based membrane electrode assembly for PEM fuel cell[J]. Journal of Electronic Materials201645(8):3900-3907.
[18]
XIE M CHU T WANG X,et al. Effect of mesoporous carbon on oxygen reduction reaction activity as cathode catalyst support for proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy202247(65):28074-28085.
[19]
WANG Y JIN J YANG S,et al. Highly active and stable platinum catalyst supported on porous carbon nanofibers for improved performance of PEMFC[J]. Electrochimica Acta2015177:181-189.
[20]
DEVRIM Y ARICA E D. Multi-walled carbon nanotubes decorated by platinum catalyst for high temperature PEM fuel cell[J]. International Journal of Hydrogen Energy201944(34):18951-18966.
[21]
LEE K H,OH J, SON J G,et al. Nitrogen-doped graphene nanosheets from bulk graphite using microwave irradiation[J]. ACS Applied Materials & Interfaces20146(9):6361-6368.
[22]
DEVRIM Y ARICA E D ALBOSTAN A. Graphene based catalyst supports for high temperature PEM fuel cell application[J]. International Journal of Hydrogen Energy201843(26):11820-11829.
[23]
CHEN B KE W LUO M,et al. Operation characteristics and carbon corrosion of PEMFC (proton exchange membrane fuel cell) with dead-ended anode for high hydrogen utilization[J]. Energy201591:799-806.
[24]
王倩倩, 郑俊生, 裴冯来, 等. 质子交换膜燃料电池膜电极的结构优化[J]. 材料工程201947(4): 1-14.
WANG Q Q ZHENG J S PEI F L, et al. Structural optimization of PEMFC membrane electrode assembly[J]. Journal of Materials Engineering201947(4): 1-14.
[25]
李团锋, 张璐瑶, 樊润林, 等. 复合石墨双极板材料及性能的研究进展[J]. 材料工程202452(2): 102-111.
LI T F ZHANG L Y FAN R L, et al. Research progress in composite graphite bipolar plate materials and properties[J]. Journal of Materials Engineering202452(2): 102-111.

基金

中国航发北京航空材料研究院益材基金项目(KJ53200209)
国家自然科学基金项目(51802296)
北京市科技新星计划项目(Z191100001119102)

评论

PDF(4827 KB)

Accesses

Citation

Detail

段落导航
相关文章

/