
还原氧化石墨烯吸波性能及宽频优化
褚海荣, 周梦雨, 时双强, 任素娥
还原氧化石墨烯吸波性能及宽频优化
Microwave absorption performance and broadband absorption optimization of reduced graphene oxide
采用改进的Hummers法制备了氧化石墨烯,然后通过高温热处理制备大片径还原氧化石墨烯(reduced graphene oxide,rGO)吸波剂,并研究了不同含量及叠加层数的rGO材料的吸波性能。计算结果表明,随着rGO含量的增加,吸波性能先增强后减弱。当rGO质量分数为1.0%,厚度为2.2 mm时,有效吸收带宽(effective absorption bandwidth,EAB,≤-10 dB)为5.4 GHz (12.0~17.4 GHz);当rGO含量为1.5%,厚度为1.8 mm时,有效吸收带宽为5.0 GHz (13.0~18.0 GHz)。为了克服单层rGO吸波材料EAB窄的缺点,以不同含量rGO吸波材料为材料库,采用改进的遗传算法优化多层叠加rGO吸波材料EAB。经优化后多层rGO吸波材料的EAB有了大幅提升,尤其当层数为3层,厚度为3.94 mm时,多层吸波材料具有最宽的EAB,达到11.5 GHz (6.5~18.0 GHz)。该研究进一步提高了rGO宽频吸波性能,具有重要的科学意义和工程应用价值。
The microwave absorption performances of different contents and superimposed layers of large sheet reduced graphene oxide (rGO) absorbers have been studied, and the rGO is obtained from the thermal reduction of graphene oxide by the improved Hummers method. The calculated results indicate that the absorption performance is first enhanced and then weakened with the increased rGO content. When the mass fraction of rGO is 1.0% and the thickness is 2.2 mm, the effective absorption bandwidth (EAB,≤-10 dB) reaches 5.4 GHz (12.0-17.4 GHz). When the mass fraction of rGO is 1.5% and the thickness is 1.8 mm, the EAB reaches 5.0 GHz (13.0-18.0 GHz). Because the EAB of the single-layer rGO absorbing material is narrow, an improved genetic algorithm has been used to optimize the EAB of multi-layer superimposed rGO absorbing material, with the different content rGO absorbing material as the material library. The EAB of multi-layer rGO absorbing material is significantly improved after optimization. The 3-layer rGO absorbing material with a thickness of 3.94 mm exhibits the widest EAB of 11.5 GHz (6.5-18.0 GHz). This study greatly improves the ultra-wide band absorption performance of graphene, which has important scientific significance and engineering value.
reduced graphene oxide / microwave absorbing / broadband absorption optimization / genetic algorithm
TB34
[1] |
杜宗波, 时双强, 陈宇滨, 等.介电型石墨烯吸波复合材料研究进展[J].材料工程,2022,50(4): 74-84.
|
[2] |
李天天, 夏龙, 黄小萧, 等.介电损耗型微波吸收材料的研究进展[J].材料工程,2021,49(6): 1-13.
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
傅玲, 刘洪波, 邹艳红, 等.Hummers法制备氧化石墨时影响氧化程度的工艺因素研究[J].炭素,2005(4): 10-14.
|
[19] |
吴娟霞, 徐华, 张锦. 拉曼光谱在石墨烯结构表征中的应用[J]. 化学学报, 2014, 72(3): 301-318.
|
[20] |
沈熙宁. 电磁场与电磁波[M]. 北京:科学出版社,2006.
|
[21] |
|
[22] |
|
[23] |
|
[24] |
雷英杰, 张善文, 李续武, 等. MATLAB 遗传算法工具箱及应用[M]. 西安:西安电子科技大学出版社,2005.
|
[25] |
邢正维, 梁迪飞, 刘川, 等.一种基于改进遗传算法的宽带吸波材料优化设计方法[J].电子元件与材料,2021, 40(11): 1088-1094.
|
[26] |
欧阳森, 王建华, 宋政湘, 等.一种新的改进遗传算法及其应用[J].系统仿真学报,2003,15(8): 1066-1068.
|
/
〈 |
|
〉 |