磺酰亚胺锂型固态聚合物电解质的合成及其电化学性能

梁金兰, 吴道欢, 邹海凤, 陈卓, 庄金亮, 程琥

PDF(2565 KB)
PDF(2565 KB)
材料工程 ›› 2025, Vol. 53 ›› Issue (7) : 174-181. DOI: 10.11868/j.issn.1001-4381.2024.000166
研究论文

磺酰亚胺锂型固态聚合物电解质的合成及其电化学性能

作者信息 +

Synthesis and electrochemical performance of lithium sulfonimide solid polymer electrolyte

Author information +
History +

摘要

分别以4-氟苯磺酰氯和4-氰基苯磺酰氯为原料,通过磺酰化和离子交换分别合成氟代和氰基取代的磺酰亚胺锂(LiFBTFSI和LiCBTFSI),进一步通过溶液浇铸法制备两种PEO基聚合物电解质(PEO20-LiFBTFSI和PEO20-LiCBTFSI),并对其微观形貌、热稳定性及电化学性能进行表征。结果表明:在60 ℃、EO/Li+=20时,两种固态电解质的离子电导率均达到10-4 S/cm,电化学稳定窗口均大于5 V,与磷酸铁锂组装的电池均具有较高的首次放电比容量(0.1 C,≈150 mAh·g-1)。相比于氟代PEO20-LiFBTFSI固态电解质,含氰基的PEO20-LiCBTFSI固态电解质具有更优异的电化学稳定性和界面相容性,循环50次后,电池的放电比容量为137.4 mAh·g-1,容量保持率为93.0%。此外,含氰基的PEO20-LiCBTFSI固态电解质与锂金属具有良好的电化学稳定性,组装的锂对称电池在电流密度0.1 mA/cm2下稳定运行500 h而不发生短路。

Abstract

Fluorinated and cyanosubstituted lithium sulfonimide (LiFBTFSI and LiCBTFSI) are synthesized from 4-fluorobenzene sulfonyl chloride and 4-cyanobenzene sulfonyl chloride by sulfonylation and ion exchange, respectively. Two PEO based polymer electrolytes (PEO20-LiFBTFSI and PEO20-LiCBTFSI) are prepared by solution casting, and their micromorphology, thermal stability and electrochemical properties are characterized. The results show that at 60 ℃ and EO/Li+=20, the ionic conductivity of the two solid electrolyte reaches 10-4 S/cm, the electrochemical stability window is greater than 5 V, and the battery assembled with lithium iron phosphate has a high initial discharge capacity (0.1 C, ≈150 mAh·g-1). Compared with the fluorine PEO20-LiFBTFSI solid electrolyte, the cyan-containing PEO20-LiCBTFSI solid electrolyte has better electrochemical stability and interface compatibility. After 50 cycles, the specific discharge capacity of the battery is 137.4 mAh·g-1, and the capacity retention rate is 93.0%. In addition, the cyano-containing PEO20-LiCBTFSI solid electrolyte has good electrochemical stability with lithium metal, and the assembled lithium symmetric battery operates stably at a current density of 0.1 mA/cm2 for 500 h without short circuit.

关键词

锂离子电池 / 聚合物电解质 / 锂盐 / 聚氧化乙烯

Key words

lithium-ion battery / polymer electrolyte / lithium salt / polyoxyethylene

中图分类号

TQ152

引用本文

导出引用
梁金兰 , 吴道欢 , 邹海凤 , . 磺酰亚胺锂型固态聚合物电解质的合成及其电化学性能. 材料工程. 2025, 53(7): 174-181 https://doi.org/10.11868/j.issn.1001-4381.2024.000166
Jinlan LIANG, Daohuan WU, Haifeng ZOU, et al. Synthesis and electrochemical performance of lithium sulfonimide solid polymer electrolyte[J]. Journal of Materials Engineering. 2025, 53(7): 174-181 https://doi.org/10.11868/j.issn.1001-4381.2024.000166

参考文献

[1]
ZHAO R WU Y LIANG Z, et al. Metal-organic frameworks for solid-state electrolytes[J]. Energy & Environmental Science202013(8): 2386-2403.
[2]
LI D WANG J GUO S, et al. Molecular-scale interface engineering of metal-organic frameworks toward ion transport enables high-performance solid lithium metal battery[J]. Advanced Functional Materials202030(50): 2070329.
[3]
LI Z FU J L ZHOU X Y, et al. Ionic conduction in polymer-based solid electrolytes[J]. Advanced Science202310(10): 2201718.
[4]
DENG K R ZENG Q G WANG D, et al. Single-ion conducting gel polymer electrolytes: design, preparation and application[J]. Journal of Materials Chemistry A20208(4): 1557-1577.
[5]
曹倩, 杨晶晶, 陈卫星, 等. PEO基固态聚合物电解质膜的静电纺丝制备及性能[J]. 材料工程202250(10): 148-156.
CAO Q YANG J J CHEN W X, et al. Preparation and properties of solid polymer electrolyte membranes based on PEO by electrospinning[J]. Journal of Materials Engineering202250(10): 148-156.
[6]
陈欣欣, 邹海凤, 陈卓, 等. 单离子导电聚合物电解质膜的制备及电化学性能研究[J]. 功能材料202253(8): 8165-8169.
CHEN X X ZOU H F CHEN Z, et al. Synthesis and electrochemical performance of lithium single-ion conductive polymer electrolyte membrances[J]. Journal of Functional Materials202253(8): 8165-8169.
[7]
LADOUCEUR S PAILLET S VIJH A, et al. Synthesis and characterization of a new family of aryl-trifluoromethanesulfonylimide Li-salts for Li-ion batteries and beyond[J]. Journal of Power Sources2015293: 78-88.
[8]
XIA S X WU X S ZHANG Z C, et al. Practical challenges and future perspectives of all-solid-state lithium-metal batteries[J]. Chem20195(4): 753-785.
[9]
CAO C LI Y CHEN S S, et al. Electrolyte-solvent-modified alternating copolymer as a single-ion solid polymer electrolyte for high-performance lithium metal batteries[J]. ACS Applied Materials & Interfaces201911(39): 35683-35692.
[10]
王子阳, 付茹, 邹海凤, 等. 锂单离子导电聚合物电解质的制备及界面稳定性[J]. 精细化工202441(2): 358-363.
WANG Z Y FU R ZOU H F, et al. Preparation and interfacial stability of single lithium-ion conductive polymer electrolytes[J]. Fine Chemicals202441(2): 358-363.
[11]
ARMAND M TARASCON J M. Building better batteries[J]. Nature2008451: 652-657.
[12]
DING P P LIN Z Y GUO X W, et al. Polymer electrolytes and interfaces in solid-state lithium metal batteries[J]. Materials Today202151: 449-474.
[13]
FENTON D E PARKER J M WRIGHT P V. Complexes of alkali metal ions with poly(ethylene oxide) [J]. Polymer197314(11): 589.
[14]
ARMAND M. Polymer solid electrolytes―an overview[J]. Solid State Ionics19839/10: 745-754.
[15]
XIAO Z ZHOU B WANG J, et al. PEO-based electrolytes blended with star polymers with precisely imprinted polymeric pseudo-crown ether cavities for alkali metal ion batteries[J]. Journal of Membrane Science2019576: 182-189.
[16]
ZHANG X WANG S XUE C, et al. Self-suppression of lithium dendrite in all-solid-state lithium metal batteries with poly(vinylidene difluoride)-based solid electrolytes[J]. Advanced Materials201931(11): 1806082.
[17]
LV F WANG Z SHI L, et al. Challenges and development of composite solid-state electrolytes for high-performance lithium ion batteries[J]. Journal of Power Sources2019441: 227175.
[18]
CHEN H W LIN T P CHANG F C. Ionic conductivity enhancement of the plasticized PMMA/LiClO4 polymer nanocomposite electrolyte containing clay[J]. Polymer200243(19): 5281-5288.
[19]
PORCARELLI L ABOUDZADEH M A RUBATAT L, et al. Single-ion triblock copolymer electrolytes based on poly(ethylene oxide) and methacrylic sulfonamide blocks for lithium metal batteries[J]. Journal of Power Sources2017364: 191-199.
[20]
HUO H WU B ZHANG T, et al. Anion-immobilized polymer electrolyte achieved by cationic metal-organic framework filler for dendrite-free solid-state batteries[J]. Energy Storage Materials201918: 59-67.
[21]
MEZIANE R BONNET J P COURTY M, et al. Single-ion polymer electrolytes based on a delocalized polyanion for lithium batteries[J]. Electrochimica Acta201157: 14-19.
[22]
MA Q ZHANG H ZHOU C, et al. Single lithium-ion conducting polymer electrolytes based on a super-delocalized polyanion[J]. Angewandte Chemie International Edition201655(7): 2521-2525.
[23]
MA Q XIA Y FENG W F, et al. Impact of the functional group in the polyanion of single lithium-ion conducting polymer electrolytes on the stability of lithium metal electrodes[J]. RSC Advances20166(39): 32454-32461.
[24]
MORIZUR V OLIVERO S DESMURS J R, et al. Novel lithium and sodium salts of sulfonamides and bis(sulfonyl)imides: synthesis and electrical conductivity[J]. New Journal of Chemistry201438(12): 6193-6197.
[25]
YUAN H Y LUAN J Y YANG Z L, et al. Single lithium-ion conducting solid polymer electrolyte with superior electrochemical stability and interfacial compatibility for solid-state lithium metal batteries[J]. ACS Applied Materials & Interfaces202012(6): 7249-7256.
[26]
MENGISTIE T S KO J M KIM J Y. Enhanced single-ion conduction and free-standing properties of solid polymer electrolyte by incorporating a polyelectrolyte[J]. Materials Research Express20218(3): 035308.
[27]
LEE Y G, RYU S, SUGIMOTO T. Dendrite-free lithium deposition for lithium metal anodes with interconnected microsphere protection[J]. Chemistry of Materials201729: 5906-5914.
[28]
LIANG X PANG Q KOCHETKOV I R, et al. A facile surface chemistry route to a stabilized lithium metal anode[J]. Nature Energy20172(9): 17119.
[29]
HARRY K J HALLINAN D T PARKINSON D Y, et al. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes[J]. Nature Materials201413(1): 69-73.

基金

国家自然科学基金项目(22062004)

评论

PDF(2565 KB)

Accesses

Citation

Detail

段落导航
相关文章

/