不同晶型纳米二氧化锰的制备及其电化学性能

张鑫鹏, 朱凯, 曹殿学, 高胤義

PDF(3793 KB)
PDF(3793 KB)
材料工程 ›› 2025, Vol. 53 ›› Issue (7) : 221-227. DOI: 10.11868/j.issn.1001-4381.2024.000134
研究论文

不同晶型纳米二氧化锰的制备及其电化学性能

作者信息 +

Synthesis and electrochemical properties of polycrystalline nano manganese dioxide

Author information +
History +

摘要

以KMnO4、MnSO4·H2O、(NH42S2O8和盐酸为原料,通过控制水热反应的温度和时间合成不同晶型的二氧化锰(MnO2)。通过XRD、SEM、TEM技术对材料的结构和形貌进行表征。结果表明,所合成的MnO2均为纳米颗粒,但不同晶型的MnO2呈现出不同的微观形貌。对比其电化学性能发现:δ-MnO2由于其独特的花球结构提供大量的反应位点,性能明显优于其他晶型的MnO2,在2 A/g的电流密度下循环1400周次可以达到623.48 mAh/g的比容量。采用循环伏安法、电化学阻抗和恒电流间歇滴定技术探究MnO2电极的动力学特性,δ-MnO2拥有更高的Li+扩散速率。

Abstract

Different crystal forms of manganese dioxide (MnO2) are synthesized using KMnO4, MnSO4·H2O, (NH4)2S2O8, and hydrochloric acid as raw materials by precisely controlling the temperature and duration of a hydrothermal reaction. The structure and morphology of the materials are characterized using XRD, SEM, and TEM. The results show that the synthesized MnO2 nanoparticles display different microscopic morphologies depending on their crystal forms. A comparison of their electrochemical performances indicates that δ-MnO2, due to its unique flower-like structure, provides many reaction sites, leading to superior performance compared to other crystal forms of manganese dioxide. At a current density of 2 A/g, δ-MnO2 achieves a capacity of 623.48 mAh/g after 1400 cycles. The kinetic properties of the MnO2 electrode are investigated using cyclic voltammetry, electrochemical impedance spectroscopy, and constant current intermittent titration techniques. It reveals that δ-MnO2 exhibits a higher Li+ diffusion rate.

关键词

锂离子电池 / 负极 / 二氧化锰 / 晶型 / 纳米材料

Key words

lithium ion battery / anode / manganese dioxide / crystalline type / nano material

中图分类号

TQ152

引用本文

导出引用
张鑫鹏 , 朱凯 , 曹殿学 , . 不同晶型纳米二氧化锰的制备及其电化学性能. 材料工程. 2025, 53(7): 221-227 https://doi.org/10.11868/j.issn.1001-4381.2024.000134
Xinpeng ZHANG, Kai ZHU, Dianxue CAO, et al. Synthesis and electrochemical properties of polycrystalline nano manganese dioxide[J]. Journal of Materials Engineering. 2025, 53(7): 221-227 https://doi.org/10.11868/j.issn.1001-4381.2024.000134

参考文献

[1]
KUNDU D TALAIE E DUFFORT V, et al. The emerging chemistry of sodium ion batteries for electrochemical energy storage[J]. Angewandte Chemie International Edition201554(11), 3431-3448.
[2]
WANG R WANG L LIU R, et al. "Fast-charging" anode materials for lithium-ion batteries from perspective of ion diffusion in crystal structure[J]. ACS Nano202418(4): 2611-2648.
[3]
TANG Y J ZHENG S S XU Y X, et al. Advanced batteries based on manganese dioxide and its composites[J]. Energy Storage Materials201812: 284-309.
[4]
LIU Y SU M Y GU Z Y, et al. Advanced lithium primary batteries: key materials, research progresses and challenges[J]. The Chemical Record202222(10):162-185.
[5]
CHEN J B WANG Y W HE X M, et al. Electrochemical properties of MnO2 nanorods as anode materials for lithium ion batteries[J]. Electrochimica Acta2014142:152-156.
[6]
XU Y H ZHANG G N LIU J Q, et al. Recent advances on challenges and strategies of manganese dioxide cathodes for aqueous zinc‐ion batteries[J]. Energy & Environmental Materials20236 (6):12575-12599
[7]
FANG X P LU X GUO X W, et al. Electrode reactions of manganese oxides for secondary lithium batteries[J]. Electrochemistry Communications201012 (11):1520-1523.
[8]
MELCHIOR S A PALANIYANDY N SIGALAS I, et al. Probing the electrochemistry of MXene (Ti2CT x )/electrolytic manganese dioxide (EMD) composites as anode materials for lithium-ion batteries[J]. Electrochimica Acta2019297: 961-973.
[9]
YUE J GU X CHEN L, et al. General synthesis of hollow MnO2, Mn3O4 and MnO nanospheres as superior anode materials for lithium ion batteries[J]. Journal of Materials Chemistry:A20142(41): 17421-17426.
[10]
ZHU K ZHANG Y QIU H L, et al. Hierarchical Fe3O4 microsphere/reduced graphene oxide composites as a capable anode for lithium-ion batteries with remarkable cycling performance[J]. Journal of Alloys and Compounds2016675:399-406.
[11]
王帅,唐梦,蔡振飞,等 .原位合成Si/(SiO+Ag)复合负极材料及其电化学性能[J].精细化工202441(1): 107-113.
WANG S TANG M CAI Z F, et al. In-situ synthesis and electrochemical properties of Si/(SiO+Ag) composite anode[J]. Fine Chemicals202441(1): 107-113.
[12]
WANG R Q LIU Z L ZHAO D Q, et al. In situ micro-current collector of amorphous manganese dioxide as cathode material for sodium-ion batteries[J]. Ionics202228(3):1211-1217.
[13]
方永正 .基于 MXene 的储存碱金属离子材料的构筑及其电化学性能研究[D].哈尔滨:哈尔滨工程大学,2021
FANG Y Z. Construction and electrochemical performances of alkali metal ion storage materials based on MXene[D]. Harbin: Harbin Engineering University, 2021.
[14]
ZHANG X L LI S WANG S H, et al. Surface oxygen vacancies boosted high rate performance of porous MnO2 anode for lithium-ion batteries[J]. Ionics202128(1):139-149.
[15]
ZHANG Y N LIU Y P LIU Z H, et al. MnO2 cathode materials with the improved stability via nitrogen doping for aqueous zinc-ion batteries[J]. Journal of Energy Chemistry202264(3):23-32.

基金

黑龙江省自然科学基金项目(LC2018004)

评论

PDF(3793 KB)

Accesses

Citation

Detail

段落导航
相关文章

/