
大气等离子喷涂NiCoCrAlYTa-Cr2O3-Cu-Mo高温耐磨涂层组织和性能
张昂, 郭孟秋, 王长亮, 张梅, 岳震, 王天颖, 聂梓杏, 高燊
大气等离子喷涂NiCoCrAlYTa-Cr2O3-Cu-Mo高温耐磨涂层组织和性能
Microstructure and properties of NiCoCrAlYTa-Cr2O3-Cu-Mo high-temperature wear-resistant coating prepared by APS
为了探究工艺参数对NiCoCrAlYTa-Cr2O3-Cu-Mo高温耐磨涂层性能的影响规律,基于正交实验,采用大气等离子喷涂(atmospheric plasma spray,APS)工艺制备NiCoCrAlYTa-Cr2O3-Cu-Mo涂层,应用极差分析法研究工艺参数对NiCoCrAlYTa-Cr2O3-Cu-Mo涂层显微组织、硬度和结合强度性能影响的主次关系,完成喷涂工艺参数优化。优化后的工艺参数为氩气流量为50 L/min,氢气流量为12 L/min,电流为500 A,喷涂距离为100 mm。结果表明:采用优化后的工艺参数喷涂的NiCoCrAlYTa-Cr2O3-Cu-Mo涂层显微组织均匀致密,涂层孔隙率小于1%,结合强度平均值为70.7 MPa,硬度平均值为543.7HV,900 ℃温度下50~100 h平均氧化速率为0.07302 g/(m2·h),达到完全抗氧化级别,在800 ℃表现出良好的摩擦磨损性能,平均摩擦因数为0.248,磨损率为2.12×10-6 mm3/(N·m)。
To investigate the effect of the spraying process parameters on the properties of NiCoCrAlYTa-Cr2O3-Cu-Mo high-temperature wear-resistant coating, the coating is prepared by atmospheric plasma spray (APS) process based on the orthogonal experiment. The range analysis method is used to study the primary and secondary relationships of the process parameters on the microstructure, hardness, and bonding strength of the NiCoCrAlYTa-Cr2O3-Cu-Mo coating, and the spraying process parameters are optimized. The optimized process parameters are that the argon flow rate is 50 L/min, the hydrogen flow rate is 12 L/min, the current is 500 A, and the spraying distance is 100 mm. With the optimized spraying process parameters, the microstructure of the coating is very dense, the porosity is lower than 1%, and the average bonding strength, hardness, and average oxidation speed during 50-100 h at 900 ℃ are 70.7 MPa, 543.7 HV, and 0.07302 g/(m2·h), respectively. In addition, the friction coefficient and wear rate of NiCoCrAlYTa-Cr2O3-Cu-Mo coating are 0.248 and 2.12×10-6 mm3/(N·m) at 800 ℃, exhibiting good friction and wear properties.
NiCoCrAlYTa-Cr2O3-Cu-Mo涂层 / 大气等离子喷涂 / 高温耐磨 / 正交实验 / 抗氧化 / 显微组织
NiCoCrAlYTa-Cr2O3-Cu-Mo coating / atmospheric plasma spray / high-temperature wear-resistant / orthogonal experiment / oxidation resistance / microstructure
TG174.442
[1] |
|
[2] |
|
[3] |
李军,李志刚,张元桥,等. 刷式密封技术的研究进展[J]. 航空发动机,2019,45(2):74-84.
|
[4] |
|
[5] |
|
[6] |
刘笑笑,任先京,章德铭,等. 刷式密封转子涂层材料研究[J]. 热喷涂技术,2011,3(4) :49-52.
|
[7] |
徐乙人,祁志浩,李永健,等. 刷式密封高温摩擦磨损行为[J]. 中国表面工程,2022,35(3):114-121.
|
[8] |
|
[9] |
|
[10] |
张佳平,王璐,杨中元,等. 超音速火焰喷涂含氟化物的碳化铬/镍铬涂层结构及性能[J]. 中国表面工程, 2011,24(2):46-50.
|
[11] |
王长亮,崔永静,汤智慧,等. 超级爆炸喷涂镍基钴基涂层高温氧化及摩擦磨损性能[J]. 装备环境工程,2020,17(1) :90-96.
|
[12] |
崔永静,孙晓萍,陈斌,等. 爆炸喷涂Cr3C2-35NiCr 涂层的组织及性能研究[J]. 热喷涂技术,2014,6(1):31-34.
|
[13] |
苏威铭,张佳平,李浩宇,等. 掺杂银对超音速火焰喷涂NiCr/Cr3C2-BaF2·CaF2涂层的影响[J]. 材料研究与应用,2020,14(2):102-108.
|
[14] |
王长亮,李伟光,陆峰,等. 爆炸喷涂制备BaF2+CaF2+Cr3C2/Ni-Cr涂层的组织及性能[J]. 装备环境工程,2008(5):25-28.
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
刘大响. 一代新材料,一代新型发动机:航空发动机的发展趋势及其对材料的需求[J]. 材料工程,2017,45(10):1-5.
|
[20] |
崔慧然,李宏然,崔启政,等. 航空发动机及燃气轮机叶片涂层概述[J]. 热喷涂技术,2019,11(1):82-94.
|
[21] |
|
[22] |
郝恩康,安宇龙,赵晓琴,等. 热喷涂高温自润滑涂层研究现状[J]. 表面技术,2018,47(6):104-111.
|
[23] |
|
[24] |
|
[25] |
王长亮,陈皓晖,张梅,等. 激光辅助热喷涂NiCoCrAlYTa/ZrO2/BaF2·CaF2涂层的组织及性能[J]. 中国表面工程,2022,35(3):84-95.
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
祁斌,于海博,梁帅帅,等. NiCr-Cr3C2-ZrO2-BaF2·CaF2涂层高温摩擦磨损性能[J]. 中国表面工程,2022,35(3):104-113.
|
[35] |
|
[36] |
|
[37] |
|
/
〈 |
|
〉 |