镍基合金在煤灰/烟气中的高温腐蚀研究进展

杜凌霄, 丁航, 谢云

PDF(1499 KB)
PDF(1499 KB)
材料工程 ›› 2025, Vol. 53 ›› Issue (2) : 106-114. DOI: 10.11868/j.issn.1001-4381.2024.000114
综述

镍基合金在煤灰/烟气中的高温腐蚀研究进展

作者信息 +

Research progress in high-temperature corrosion of Ni-base alloys in coal ash/flue gas

Author information +
History +

摘要

为实现经济的绿色、高效、低碳发展,研究具有更高蒸汽参数的700 ℃先进超超临界燃煤发电技术引起了世界各国的广泛关注。然而,随着蒸汽参数的提高和服役环境的恶化,传统的铁素体/马氏体耐热钢和奥氏体耐热钢已无法满足要求,需要考虑采用镍基合金。本文基于采用富氧燃烧技术的700 ℃先进超超临界燃煤锅炉的煤灰/烟气腐蚀环境,综述了镍基合金高温烟气腐蚀和煤灰腐蚀的研究进展,着重梳理了烟气中的CO2,H2O(g),SO2和煤灰中的硫酸盐对镍基合金热生长Cr2O3保护膜的影响。最后,指出煤灰中金属氧化物颗粒以及生物质燃烧产生的高温含Cl腐蚀性气体和KCl熔盐对镍基合金高温腐蚀行为的影响是未来的重点研究方向。

Abstract

To meet the requirements of green, efficient, and low-carbon development, the next generation of 700 ℃ level advanced ultra-supercritical (A-USC) coal-fired power plants with increased steam temperature and pressure has received great attention worldwide. However, the increased steam parameters and harsh service environment corresponding to the A-USC boiler seriously threaten the safe operation of heat-exchanging components. The traditional ferritic/martensitic heat-resistant steels and austenitic stainless steels cannot survive due to their inadequate creep strength and corrosion resistance at temperatures above 700 ℃, and Ni-base alloys are required. Based on the coal ash/flue gas environment related to A-USC boiler adopting oxy-fuel combustion, the research progress in high-temperature corrosion of Ni-base alloys exposed to flue gas and coal ash was summarized, especially focusing on the effect of corrosive CO2, H2O(g), SO2 gases and sulfate salts on the thermal growth of CrO3 protective film on Ni-base alloys. Finally, the effect of oxide particulates in coal ash, Cl-containing gases, and molten KCl salts resulting from biomass combustion on the high-temperature corrosion behavior of Ni-base alloys is the key direction for future research.

关键词

镍基合金 / 煤灰/烟气腐蚀 / 高温腐蚀 / 先进超超临界锅炉

Key words

Ni-base alloy / coal ash/flue gas corrosion / high-temperature corrosion / advanced ultra-supercritical boiler

中图分类号

TG172

引用本文

导出引用
杜凌霄 , 丁航 , 谢云. 镍基合金在煤灰/烟气中的高温腐蚀研究进展. 材料工程. 2025, 53(2): 106-114 https://doi.org/10.11868/j.issn.1001-4381.2024.000114
Lingxiao DU, Hang DING, Yun XIE. Research progress in high-temperature corrosion of Ni-base alloys in coal ash/flue gas[J]. Journal of Materials Engineering. 2025, 53(2): 106-114 https://doi.org/10.11868/j.issn.1001-4381.2024.000114

参考文献

[1]
“能源领域咨询研究”综合组. 推动能源生产和消费革命战略研究[J].中国工程科学201517(9): 11-17.
The Comprehensive Research Group for Energy Consulting and Research. Strategic research on promoting energy revolution of production and consumption [J]. Strategic Study of CAE201517(9): 11-17.
[2]
杨啸峰, 徐雅欣, 鲁金涛, 等. Super 304H钢在模拟烟气腐蚀环境中持久性能与组织演变研究[J]. 热力发电202352(10): 31-38.
YANG X F XU Y X LU J T, et al. Influence of simulated fireside corrosion on creep rupture properties and microstructure evolution of super 304H steel[J]. Thermal Power Generation202352(10): 31-38.
[3]
熊义, 刘光明, 占阜元, 等. 3种热喷涂涂层在模拟气氛/煤灰环境下的热腐蚀及失效行为[J]. 中国腐蚀与防护学报202141(3): 369-375.
XIONG Y LIU G M ZHAN F Y, et al. Hot corrosion and filure behavior of three thermal spraying coatings in simulated atmosphere/coal ash environment[J]. Journal of Chinese Society for Corrosion and Protection202141(3): 369-375.
[4]
鲁金涛, 谷月峰, 杨珍. 3种700℃级超超临界燃煤锅炉备选高温合金煤灰腐蚀行为[J]. 腐蚀科学与防护技术201426(3): 205-210.
LU J T GU Y F YANG Z. Coal ash induced corrosion of three candidate materials for superheater boiler tubes of advanced ultrasupercritical power station[J]. Corrosion Science and Protection Technology201426(3): 205-210.
[5]
李博帅, 鲁金涛, 朱明, 等. 镍铁基高温合金摩擦焊接接头在煤灰/烟气中的腐蚀行为[J]. 材料导报202135(): 395-401.
摘要
增刊1
LI B S LU J T ZHU M, et al. Corrosion behavior of friction welding joints of Ni-Fe based superalloy in coal ash /flue gas[J]. Materials Reports202135(): 395-401.
Suppl 1
[6]
ABE F. Research and development of heat-resistant materials for advanced USC power plants with steam temperatures of 700 ℃ and above[J]. Engineering20151(2): 211-224.
[7]
SCHÜTZE M QUADAKKERS W J. Future directions in the field of high-temperature corrosion research[J]. Oxidation of Metals201787(5): 681-704.
[8]
李琰, 鲁金涛, 杨珍, 等. 烟气S含量对700 ℃超超临界锅炉候选合金腐蚀行为影响[J]. 中国腐蚀与防护学报201636(5): 505-512.
LI Y LU J T YANG Z, et al. Effect of sulfur content on corrosion behavior of candidate alloys used for 700 ℃ level A-USC boiler in simulated coal ash and flue gas environments[J]. Journal of Chinese Society for Corrosion and Protection201636(5): 505-512.
[9]
CHANDRA K KRANZMANN A SALIWAN N R, et al. High temperature oxidation behavior of 9-12% Cr ferritic/martensitic steels in a simulated dry oxyfuel environment[J]. Oxidation of Metals201583(3): 291-316.
[10]
SHANG C G XIN L XU Q L, et al. Fireside corrosion of P92 steel with mixed sulfate deposit at 650 ℃[J]. Oxidation of Metals202094: 323-341.
[11]
YAN W WANG W SHAN Y, et al. Microstructural stability of 9-12%Cr ferrite/martensite heat-resistant steels[J]. Frontiers of Materials Science20137: 1-27.
[12]
DUDZIAK T HUSSAIN T SIMMS N J. High-temperature performance of ferritic steels in fireside corrosion regimes: temperature and deposits[J]. Journal of Materials Engineering and Performance201726(1): 84-93.
[13]
KNEŽEVIĆ V BALUN J SAUTHOFF G, et al. Design of martensitic/ferritic heat-resistant steels for application at 650 ℃ with supporting thermodynamic modelling[J]. Materials Science and Engineering: A2008477(1/2): 334-343.
[14]
VISWANATHAN R HENRY J F TANZOSH J, et al. U.S. program on materials technology for ultra-supercritical coal power plants[J]. Journal of Materials Engineering and Performance201322(10): 2904-2915.
[15]
SYED A U HUSSAIN T SIMMS N J, et al. Microscopy of fireside corrosion on superheater materials for oxy-fired pulverised fuel power plants[J]. Materials at High Temperatures201229(3): 219-228.
[16]
刘武, 鲁金涛, 黄锦阳, 等. Super 304H 钢在650 ℃模拟烟气侧腐蚀行为实验[J]. 热力发电201847(6): 78-84.
LIU W LU J T HUNAG J Y, et al. Experimental of the corrosion behavior of super 304H steel in simulative coal ash/flue gas environment at 650 ℃[J]. Thermal Power Generation201847(6): 78-84.
[17]
官宇, 刘光明, 张民强, 等. Sanicro25钢在高硫煤灰/模拟烟气中的高温腐蚀行为研究[J]. 中国腐蚀与防护学报202242(4): 681-686.
GUAN Y LIU G M ZHANG M Q, et al. High temperature corrosion behavior of Sanicro25 steel in high-sulfur coal ash/simulated flue gas[J]. Journal of Chinese Society for Corrosion and Protection202242(4): 681-686.
[18]
MONTERO X ISHIDA A RUDOLPHI M, et al. Breakaway corrosion of austenitic steel induced by fireside corrosion[J]. Corrosion Science2020173: 108765.
[19]
HUCZKOWSKI P NAJIMA S CHYRKIN A, et al. Corrosion behavior of austenitic stainless steels in oxidizing and reducing gases relevant to oxyfuel power plants[J]. JOM Journal of the Minerals Metals and Materials Society201870(8): 1502-1510.
[20]
陈勇, 梁法光, 于在松, 等. TP347H钢600及650 ℃长时持久性能评估[J]. 热力发电202049(2): 127-130.
CHEN Y LIANG F G YU Z S, et al. Estimation of long-term creep property of TP347H steel at 600 ℃ and 650 ℃[J]. Thermal Power Generation202049(2): 127-130.
[21]
SIMMS N J SUMNER J HUSSAIN T, et al. Fireside issues in advanced power generation systems[J]. Materials Science and Technology201329(7): 804-812.
[22]
PATEL S J DEBARBADILLO J J BAKER B A, et al. Nickel base superalloys for next generation coal fired AUSC power plants[J]. Procedia Engineering201355: 246-252.
[23]
刘正东, 陈正宗, 何西扣, 等. 630~700 ℃超超临界燃煤电站耐热管及其制造技术进展[J]. 金属学报202056(4): 539-548.
LIU Z D CHEN Z Z HE X K, et al. Systematical innovation of heat resistant materials used for 630-700 ℃ advanced ultra-supercritical (A-USC) fossil fired boilers[J]. Acta Metallurgica Sinica202056(4): 539-548.
[24]
白银, 刘正东, 包汉生, 等. 锅炉用马氏体钢蒸汽氧化行为研究进展[J]. 材料工程202149(6): 77-84.
BAI Y LIU Z D BAO H S, et al. Research progress in steam oxiddation behavior of martensitic steel used for boiler[J]. Journal of Materials Engineering202149(6): 77-84.
[25]
曹超, 蒋成洋, 鲁金涛, 等. 不同Cr含量的奥氏体不锈钢在700 ℃煤灰/高硫烟气环境中的腐蚀行为[J]. 金属学报202258(1): 67-74.
CAO C JIANG C Y LU J T, et al. Corrosion behavior of austeniticstainless steel with different Cr contents in 700 ℃ coal ash/high sulfurflue-gas environment[J]. Acta Metallurgica Sinica202258(1): 67-74.
[26]
杨啸峰, 徐雅欣, 黄锦阳, 等. 火电机组锅炉受热面合金烟气腐蚀与应力协同作用失效行为研究进展[J]. 材料工程202250(5): 100-111.
YANG X F XU Y X HUANG M Y, et al. Research progress in failure of alloys for hot-section components in thermal power plant boilers under synergism of fireside corrosion and stress[J]. Journal of Materials Engineering202250(5): 100-111.
[27]
FU C LI Y WANG Y F. Microstructure and corrosion resistance of NiCr-based coatings in simulated coal-fired boiler conditions[J]. Oxidation of Metals202195(1/2): 45-63.
[28]
张世宏, 胡凯, 刘侠, 等. 发电锅炉材料与防护涂层的磨蚀机制与研究展望[J]. 金属学报202258(3): 272-294.
ZHANG S H HU K LIU X, et al. Corrosion-erosion mechanism and research prospect of bare materials and protective coatings for power generation boiler [J]. Acta Metallurgica Sinica202258(3): 272-294.
[29]
BORDENET B. Influence of novel cycle concepts on the high-temperature corrosion of power plants[J]. Materials and Corrosion200859(5): 361-366.
[30]
江蓉, 张进, 李小姗, 等. 基于富氧燃烧的CO2压缩纯化技术研究进展[J]. 煤炭学报202247(11): 3914-3925.
JIANG R ZHANG J LI X S, et al. Research progress of CO2 compresion and purification technology based on oxy-fuel combustion[J].Journal of China Coal Society202247(11):3914-3925.
[31]
STANGER R WALL T SPÖRL R, et al. Oxyfuel combustion for CO2 capture in power plants[J]. International Journal of Greenhouse Gas Control201540: 55-125.
[32]
ZHENG C LIU Z XIANG J, et al. Fundamental and technical challenges for a compatible design scheme of oxyfuel combustion technology[J]. Engineering20151(1): 139-149.
[33]
STEIN-BRZOZOWSKA G NORLING R VIKLUND P, et al. Fireside corrosion during oxyfuel combustion considering various SO2 contents[J]. Energy Procedia201451: 135-147.
[34]
TOFTEGAARD M B BRIX J JENSEN P A, et al. Oxy-fuel combustion of solid fuels[J]. Progress in Energy and Combustion Science201036(5): 581-625.
[35]
SCHEFFKNECHT G AL-MAKHADMEH L SCHNELL U, et al. Oxy-fuel coal combustion-a review of the current state-of-the-art[J]. International Journal of Greenhouse Gas Control20115: S16-S35.
[36]
NGUYEN T D XIE Y DING S, et al. Oxidation behavior of Ni-Cr alloys in CO2 at 700 ℃[J]. Oxidation of Metals201787(5): 605-616.
[37]
XIE Y ZHANG J YOUNG D J. Temperature effect on oxidation behavior of Ni-Cr alloys in CO2 gas atmosphere[J]. Journal of the Electrochemical Society2017164(6): 285-293.
[38]
JIANG C XIE Y KONG C, et al. Corrosion behaviour of Ni-Cr alloys in mixed oxidising gases at 650 ℃[J]. Corrosion Science2020174: 108801.
[39]
LIANG Z YU M GUI Y, et al. Corrosion behavior of heat-resistant materials in high-temperature carbon dioxide environment[J]. JOM Journal of the Minerals Metals and Materials Society201870(8): 1464-1470.
[40]
梁志远, 徐一鸣, 王硕, 等. 高等级合金CO2环境下的腐蚀行为研究[J]. 中国腐蚀与防护学报202242(4): 613-620.
LIANG Z Y XU Y M WANG S, et al. Corrosion behavior of heat-resistant alloys in high temperature CO2 environment[J]. Journal of Chinese Society for Corrosion and Protection202242(4): 613-620.
[41]
李玉峰, 梁志远, 邓世丰, 等. 高温CO2环境下耐热合金HR6W和740H的腐蚀行为[J]. 西安交通大学学报202054(5): 179-188.
LI Y F LIANG Z Y DENG S F, et al. Corrosion behavior of heat resistant alloys HR6W and 740H in high-temperature carbon dioxide environment[J]. Journal of Xi’an Jiaotong University202054(5): 179-188.
[42]
WAGNER C. Theoretical analysis of the diffusion processes determining the oxidation rate of alloys[J]. Journal of the Electrochemical Society195299(10): 369-380.
[43]
ZHU D CHEN J CHEN J, et al. Atomic origin of CO2-promoted oxidation dynamics of chromia-forming alloys[J]. Acta Materialia2024264: 119578.
[44]
XIE Y ZHANG J YOUNG D J. Water vapour effects on corrosion of Ni-Cr alloys in CO2 gas at 650 ℃[J]. Corrosion Science2018136: 311-325.
[45]
XIE Y NGUYEN T D ZHANG J, et al. Corrosion behaviour of Ni-Cr alloys in wet CO2 atmosphere at 700 ℃ and 800 ℃[J]. Corrosion Science2019146: 28-43.
[46]
OTHMAN N K ZHANG J Q YOUNG D J. Water vapour effects on Fe-Cr alloy oxidation[J]. Oxidation of Metals201073(1/2): 337-352.
[47]
MEIER G H JUNG K MU N, et al. Effect of alloy composition and exposure conditions on the selective oxidation behavior of ferritic Fe-Cr and Fe-Cr-X alloys[J]. Oxidation of Metals201074(5): 319-340.
[48]
ABELLÁN J P OLSZEWSKI T MEIER G H, et al. The oxidation behaviour of the 9% Cr steel P92 in CO2- and H2O-rich gases relevant to oxyfuel environments[J]. International Journal of Materials Research2010101(2): 287-299.
[49]
AUCHI M HAYASHI S TOYOTA K, et al. Effect of water vapor on the high-temperature oxidation of pure Ni[J]. Oxidation of Metals201278(1): 51-61.
[50]
GALERIE A WOUTERS Y CAILLET M. The kinetic behavior of metals in water vapour at high temperatures: can general rules be proposed?[J]. Materials Science Forum2001369/372: 231-238.
[51]
SRISRUAL A PETIT J P WOUTERS Y, et al. The effect of water vapor on thermal oxide grown on Inconel 690[J]. Applied Mechanics and Materials2014670/671: 74-81.
[52]
SIMON D GORR B HÄNSEL M, et al. Effect of in-situ gas changes on thermally grown chromia scales formed on Ni-25Cr alloy at 1000 ℃ in atmospheres with and without water vapour[J]. Materials at High Temperatures201532(1/2): 238-247.
[53]
ZUREK J YOUNG D J ESSUMAN E, et al. Growth and adherence of chromia based surface scales on Ni-base alloys in high- and low-pO2 gases[J]. Materials Science and Engineering: A2008477(1/2): 259-270.
[54]
YOUNG D J. Effects of water vapour on the oxidation of chromia formers[J].Materials Science Forum2008595:1189-1197.
[55]
BIRKS N MEIER G H PETTIT F K. 金属高温氧化导论[M].辛丽, 王文译. 2 版. 北京: 高等教育出版社, 2010.
BIRKS N MEIER G H PETTIT F. Introduction to the high-temperature oxidation of metals [M].translated by XIN L, WANG W. 2nd ed. Beijing: Higher Education Press, 2010.
[56]
张知翔, 成丁南, 边宝, 等. 水冷壁材料在模拟烟气中的高温腐蚀研究[J]. 材料工程2011(4): 14-19.
ZHANG Z X CHENG D N BIAN B, et al. Study on high temperature corrosion of water wall materials in simulated furnace atmosphere[J].Journal of Materials Engineering2011(4): 14-19.
[57]
OU X M SUN Z SUN M, et al. Hot-corrosion mechanism of Ni-Cr coatings at 650 ℃ under different simulated corrosion conditions[J]. Journal of China University of Mining and Technology200818(3): 444-448.
[58]
HUCZKOWSKI P YOUNG D J OLSZEWSKI T, et al. Effect of sulphur on the oxidation behaviour of possible construction materials for heat exchangers in oxyfuel plants in the temperature range 550-700 ℃[J]. Oxidation of Metals201889: 651-681.
[59]
HUCZKOWSKI P NAJIMA S CHYRKIN A, et al. Corrosion behavior of candidate heat exchanger materials in oxidizing and reducing gases relevant to oxyfuel power plants[J]. Materials at High Temperatures201835(1/3): 275-290.
[60]
STEIN-BRZOZOWSKA G FLÓREZ D M MAIER J, et al. Nickel-base superalloys for ultra-supercritical coal-fired power plants: fireside corrosion. laboratory studies and power plant exposures[J]. Fuel2013108: 521-533.
[61]
OLEKSAK R P TYLCZAK J H TEETER L, et al. High-temperature corrosion of chromia-forming Ni-based alloys in CO2 containing impurities[J]. High Temperature Corrosion of Materials2023100: 597-620.
[62]
ZENG Z NATESAN K CAI Z, et al. Effect of coal ash on the performance of alloys in simulated oxy-fuel environments[J]. Fuel2014117: 133-145.
[63]
SHA C YANG L CAIRNEY J M, et al. Sulphur diffusion through a growing chromia scale and effects of water vapour[J]. Corrosion Science2023222: 111410.
[64]
BENLYAMANI M AJERSCH F KENNEDY G. Solubility of sulfur in pure Cr2O3 at 1000 ℃[J]. Oxidation of Metals198829(3): 203-216.
[65]
YU C NGUYEN T D ZHANG J Q, et al. Corrosion of Fe-9Cr-(Mn, Si) alloys in CO2-H2O-SO2 gases[J]. Corrosion Science201598: 516-529.
[66]
NGUYEN T D LA FONTAINE A YANG L, et al. Atom probe study of impurity segregation at grain boundaries in chromia scales grown in CO2 gas[J]. Corrosion Science2018132: 125-135.
[67]
MEIER G H. Current aspects of deposit-induced corrosion[J]. Oxidation of Metals202298: 1-41.
[68]
ZENG Z NATESAN K CAI Z, et al. Effects of calcium in ash on the corrosion performance of Ni-based alloys in simulated oxy-fuel environment[J]. Fuel2016178: 10-22.
[69]
HU S FINKLEA H LIU X. A review on molten sulfate salts induced hot corrosion[J]. Journal of Materials Science & Technology202190: 243-254.
[70]
PAN P LI T WANG Y, et al. Effect of temperature on hot corrosion of nickel-based alloys for 700 ℃ A-USC power plants[J]. Corrosion Science2022203: 110350.
[71]
XIE Y CAI Y ZHANG J, et al. Effects of sulphate deposits on corrosion behaviour of Ni-base alloys in wet CO2 gas at 750 ℃[J]. Corrosion Science2021181: 109227.
[72]
GHENO T MEIER G H GLEESON B. High temperature reaction of mcraly coating compositions with cao deposits[J]. Oxidation of Metals201584(1): 185-209.
[73]
GHENO T GLEESON B. Modes of deposit-induced accelerated attack of MCrAlY systems at 1100 ℃[J]. Oxidation of Metals201787(1): 249-270.
[74]
JA'BAZ I CHEN J ETSCHMANN B, et al. High-temperature tube corrosion upon the interaction with Victorian brown coal fly ash under the oxy-fuel combustion condition[J]. Proceedings of the Combustion Institute201736(3):3941-3948.
[75]
CAI Y XI X ZHANG J, et al. Effects of salt and ash deposits on corrosion behaviour of Ni-25Cr in Ar-60CO2-20H2O gas at 650 ℃[J]. Materials at High Temperatures202340(4): 260-271.
[76]
JUNG K KIM C S PETTIT F S, et al. Interfacial failure via encapsulation of external particulates in an outward-growing thermal oxide[J]. Journal of Power Sources2011196(10): 4686-4694.
[77]
XI X SHEN Z ZHANG J, et al. Nickel oxide scale microstructure and accelerated growth in combustion flue gas: effect of ash particles[J]. Corrosion Science2023218: 111153.

基金

国家自然科学基金项目(52301089)
江西省重点研发计划项目(20232BBE50007)
江西省自然科学基金项目(20224BAB214018)

评论

PDF(1499 KB)

Accesses

Citation

Detail

段落导航
相关文章

/