石墨及其复合材料3D打印研究进展

何玉玉, 刘轶, 张芸芸, 周志军, 刘于青, 王勇, 罗凯, 剡秀秀, 曹继伟, 陈张伟

PDF(827 KB)
PDF(827 KB)
材料工程 ›› 2025, Vol. 53 ›› Issue (3) : 35-43. DOI: 10.11868/j.issn.1001-4381.2024.000087
综述

石墨及其复合材料3D打印研究进展

作者信息 +

Research progress in 3D printing of graphite and its composite materials

Author information +
History +

摘要

3D打印作为一种新型制造技术,已被广泛应用于各类材料的成型制造,并展现出巨大的发展潜力。石墨具有优良的耐高温性、导电性、导热性、热稳定性和化学稳定性,在冶金化工、能源行业、航空航天、核工业等领域得到广泛应用。以石墨及其复合材料作为基体,利用3D打印技术生产制造石墨基产品,能够缩短生产周期、提高材料利用率、减少石墨粉尘污染,为高性能复杂形状石墨的个性化定制及产业化应用提供了一种高效经济的综合解决方案。本文重点阐述了石墨及其复合材料的3D打印技术,分析了各种技术的优缺点,并介绍了3D打印成型的石墨产品的性能和应用,论述了石墨及其复合材料在3D打印领域发展过程中的机遇和挑战,并对未来的发展提出了展望和建议,石墨3D打印技术的发展还需开发扩展石墨复合材料的种类和新型打印装备及其配套设备,并在传统石墨的基础上进行3D打印石墨后处理技术研发。

Abstract

3D printing, as a new manufacturing technology, has been widely applied in the forming and manufacturing of various materials with enormous development prospects. Graphite has excellent high-temperature resistance, conductivity, thermal conductivity, thermal stability, and chemical stability, widely used in fields such as metallurgy, energy industry, aerospace, and nuclear industry. Using graphite and its composite materials as the matrix and 3D printing technology to produce graphite products can reduce the graphite production cycle, improve material utilization, reduce graphite dust pollution, and provide an efficient and economical comprehensive solution for personalized customization and industrial application of high-performance and complex shaped graphite. This article focuses on the 3D printing technology of graphite and its composite materials, analyzes and discusses the advantages and disadvantages of each technology, introduces the performance and application of graphite products formed by 3D printing, discusses the opportunities and challenges of graphite and its composite materials in the development process of 3D printing, and puts forward expectations and prospects for this. The development of graphite 3D printing technology needs to develop the types of expansion of graphite composite materials and new printing equipment and its supporting equipment, and conduct 3D printed graphite post -processing technology based on traditional graphite process.

关键词

石墨3D打印 / 尺寸精度 / 微波吸收 / 石墨电极

Key words

graphite 3D printing / size accuracy / microwave absorption / graphite electrode

中图分类号

TB33 / TQ174.5 / TP391.73

引用本文

导出引用
何玉玉 , 刘轶 , 张芸芸 , . 石墨及其复合材料3D打印研究进展. 材料工程. 2025, 53(3): 35-43 https://doi.org/10.11868/j.issn.1001-4381.2024.000087
Yuyu HE, Yi LIU, Yunyun ZHANG, et al. Research progress in 3D printing of graphite and its composite materials[J]. Journal of Materials Engineering. 2025, 53(3): 35-43 https://doi.org/10.11868/j.issn.1001-4381.2024.000087

参考文献

[1]
CHUNG D D L. Review graphite [J]. Journal of Materials Science200237: 1475-1489.
[2]
SENGUPTA R BHATTACHARYA M BANDYOPADHYAY S, et al. A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites [J]. Progress in Polymer Science201136(5): 638-670.
[3]
JARA A D BETEMARIAM A WOLDETINSAE G, et al. Purification, application and current market trend of natural graphite: a review [J]. International Journal of Mining Science and Technology201929: 671-689.
[4]
MANOHAR G MAITY S R PANDER K M. Microstructural and mechanical properties of microwave sintered AA7075/graphite/SiC hybrid composite fabricated by powder metallurgy techniques [J]. Silicon202214(10): 5179-5189.
[5]
GHALEHKHONDABI V FAZLALI A DANESHPOUR F. Electrochemical extraction of palladium from spent heterogeneous catalysts of a petrochemical unit using the leaching and flat plate graphite electrodes [J]. Separation and Purification Technology2021258: 117527.
[6]
SANDHWAR V K SAXENA D VERMA S, et al. Comparison of COD removal from petrochemical wastewater by electro-Fenton and electro oxidation processes: optimization and kinetic analyses [J]. Separation Science and Technology202156(13): 2300-2309.
[7]
BIDHAR S SIMOS N SENOR D, et al. Failure investigation of nuclear grade POCO graphite target in high energy neutrino physics through numerical simulation [J]. Nuclear Materials and Energy202024: 100761.
[8]
WANG L TIEU A K ZHU H, et al. The effect of expanded graphite with sodium metasilicate as lubricant at high temperature [J]. Carbon2020159: 345-356.
[9]
SHUKLA P SAXENA P MADHWAL D, et al. Battery-operated resistive sensor based on electrochemically exfoliated pencil graphite core for room temperature detection of LPG [J]. Sensors and Actuators B2021343: 130133.
[10]
POPOV V FLEISHER A MULLER K, et al. Novel hybrid method to additively manufacture denser graphite structures using binder jetting [J]. Scientific Reports20211(11): 2438
[11]
CHEN Z LI Z LI J, et al. 3D printing of ceramics: a review [J]. Journal of the European Ceramic Society201939(4): 661-687.
[12]
KAFLE A LUIS E SILWAL R, et al. 3D/4D printing of polymers: fused deposition modelling (FDM), selective laser sintering (SLS), and stereolithography (SLA) [J]. Polymers202113(18): 3101.
[13]
KUMAR S GOSWAMI M SINGH N, et al. A comprehensive review of the 3D printing of sp2 carbons: materials, properties and applications [J]. New Carbon Materials202237(6): 1046-1063.
[14]
刘宸希,康红军,吴金珠,等.3D打印技术及其在医疗领域的应用[J].材料工程202149(6):66-76.
LIU C X KANG H J WU J Z, et al. 3D printing and its application in the field of medicine[J]. Journal of Materials Engineering202149(6): 66-76.
[15]
CHADHA U ABROL A VORA N P, et al. Performance evaluation of 3D printing technologies: a review, recent advances, current challenges, and future directions [J]. Progress in Additive Manufacturing20227: 853-886.
[16]
史雨菲,李小丽,何天翊,等.石墨烯基材料在3D打印领域的研究进展[J].电镀与精饰202345 (7): 74-83.
SHI Y F LI X L HE T Y, et al. Research progress of graphene-based materials in the field of 3D printing [J]. Electroplating and Fine Decoration202345 (7): 74-83.
[17]
刘岩松,李文博,刘永胜,等.3D打印陶瓷铸型研究与应用进展[J].材料工程202250(7):18-29.
LIU Y S LI W B LIU Y S, et al. Research and application progress of 3D printing ceramic casting mould[J]. Journal of Materials Engineering202250(7): 18-29.
[18]
陈晖,孙玲胜,钱伟栋,等.选择性激光烧结聚醚砜树脂/碳纤维/炭黑复合材料的性能研究[J].中国塑料202337(9):14-18.
CHEN H SUN L S QIAN W D, et al. Performance study of selective laser sintering of polyethersulfone resin/carbon fiber/carbon black composite materials [J]. China Plastics202337(9): 14-18.
[19]
荆奕菲,吴海华.球形石墨碎片选择性激光烧结成形工艺实验研究[J].中国标准化2022(3):196-200.
JING Y F WU H H. Experimental study on selective laser sintering process for spherical graphite fragments [J]. China Standardization2022(3):196-200.
[20]
WU H CHEN K LI Y, et al. Fabrication of natural flake graphite/ceramic composite parts with low thermal conductivity and high strength by selective laser sintering [J]. Applied Sciences202010(4): 1314.
[21]
耿莉,成溯,付前刚,等.碳/碳复合材料的激光烧蚀行为与机制[J].复合材料学报202239(9):4337-4343.
GENG L CHENG S FU Q G, et al. Laser ablation behavior and mechanism of carbon/carbon composite materials [J]. Acta Materiae Composites Sinica202239(9): 4337-4343.
[22]
吴海华,贺俊超,钟磊,等.微热压增材制造轻质、高强度、低导热碳化硅/石墨复合材料[J].复合材料学报202239(7):3542-3553.
WU H H HE J C ZHONG L, et al. Micro hot pressing additive manufacturing of lightweight, high-strength, low thermal conductivity silicon carbide/graphite composite materials [J]. Acta Materiae Composites Sinica202239 (7): 3542-3553.
[23]
黄才华,彭建辉,任超群,等.选择性激光烧结石墨件后处理工艺研究[J].应用激光201939(1):61-67.
HUANG C H PENG J H REN C Q, et al. Research on the post-treatment process of selective laser lithotripsy ink pieces [J]. Applied Laser201939 (1): 61-67.
[24]
陈晖,谭博,孙玲胜,等.基于SLS的碳纤维/石墨混杂填料形状对聚醚砜树脂烧结件性能的影响[J].工程塑料应用202351(6):129-134.
CHEN H TAN B SUN L S, et al. The influence of the shape of carbon fiber/graphite hybrid filler based on SLS on the performance of polyethersulfone resin sintered parts [J]. Engineering Plastic Applications202351 (6): 129-134.
[25]
杨金华,艾莹珺,陈子木,等.熔融渗硅对石墨材料微观结构及性能的影响[J].硅酸盐通报202140(1):231-240,251.
YANG J H AI Y J CHEN Z M, et al. The effect of molten silicon infiltration on the microstructure and properties of graphite materials [J]. Silicate Bulletin202140 (1): 231-240, 251.
[26]
吴海华,康怡,刘智,等.选择性激光烧结制备石墨/碳化硅复合高温熔盐封装材料的性能[J]. 热处理学报202344(6):28-36.
WU H H KANG Y LIU Z, et al. Properties of graphite/silicon carbide composite high-temperature molten salt packaging materials prepared by selective laser sintering [J]. Journal of Materials Heat Treatment202344 (6): 28-36.
[27]
MISHRA V NEGI S KAR S. FDM-based additive manufacturing of recycled thermoplastics and associated composites [J]. Journal of Material Cycles and Waste Management202325(2): 758-784.
[28]
FRUNZAVERDE D COJOCARU V BACESCU N, et al. The influence of the layer height and the filament color on the dimensional accuracy and the tensile strength of FDM-printed PLA specimens [J]. Polymers202315(10): 2377.
[29]
薛周航,李庆业,张伟,等.熔融沉积成型用聚乙烯/膨胀石墨导热复合材料的制备及性能[J].科学与工程202036(9):88-96.
XUE Z H LI Q Y ZHANG W, et al. Preparation and properties of polyethylene/expanded graphite thermal conductive composite materials for melt deposition molding [J]. Polymer Materials Science and Engineering202036 (9): 88-96.
[30]
ZERANKESHI M M SAYEDAIN S S TAVANGARIFARD M, et al. Developing a novel technique for the fabrication of PLA-graphite composite filaments using FDM 3D printing process [J]. Ceramics International202248(21): 31850-31858.
[31]
ZERANKESHI M M ALIZADEH R. 3D-printed PLA-Gr-Mg composite scaffolds for bone tissue engineering applications [J]. Journal of Materials Research and Technology202322: 2440-2446.
[32]
赵琛,蔡嘉伟,张百成,等.黏结剂喷射3D打印关键技术[J].材料工程202351(5):14-26.
ZHAO C CAI J W ZHANG B W, et al. Key technology of binder jet 3D printing[J]. Journal of Materials Engineering202351(5):14-26.
[33]
MOSTAFAEI A ELLIOTT A M BARNES J E, et al. Binder jet 3D printing-process parameters, materials, properties, modeling, and challenges [J]. Progress in Materials Science2021119: 100707.
[34]
ZIAEE M CRANE N B. Binder jetting: a review of process, materials, and methods [J]. Additive Manufacturing201928: 781-801.
[35]
SHAHZAD A LAZOGLU I. Direct ink writing (DIW) of structural and functional ceramics: recent achievements and future challenges [J]. Composites Part B: Engineering2021225: 109249.
[36]
姜波,郭新宇,焦欢,等.木质素基复合材料的直写式3D打印及其功能应用[J].复合材料学报202340(4):1913-1923.
JIANG B GUO X Y JIAO H, et al. Direct writing 3D printing of lignin based composite materials and their functional applications [J]. Acta Materiae Composites Sinica202340 (4): 1913-1923.
[37]
SAADI M A S R MAGUIRE A POTTACKAL N, et al. Direct ink writing:a 3D printing technology for diverse materials [J]. Advanced Materials202234(28): 2108855.
[38]
XU C QUINN B LEBEL L L, et al. Multi-material direct ink writing (DIW) for complex 3D metallic structures with removable supports [J]. ACS Applied Materials and Interfaces201911: 8499-8506.
[39]
SAJADI S M ENAYAT S VASARHELYI L, et al. Three-dimensional printing of complex graphite structures [J]. Carbon2021181: 260-269.
[40]
HANEY R TRAN P TRIGG E B, et al. Printability and performance of 3D conductive graphite structures [J]. Additive Manufacturing202137: 101618.
[41]
ZHANG F WU K XU X, et al. 3D printing of graphite electrode for lithium-ion battery with high areal capacity [J]. Energy Technology202111(9): 2100628.
[42]
WANG L LI X SHI X, et al. Recent progress of microwave absorption microspheres by magnetic-dielectric synergy [J]. Nanoscale202113(4): 2136-2156.
[43]
GAO Q YE X HE E, et al. 3D printed composites achieve broadband electromagnetic wave absorption by introducing carbon black/carbonyl iron powder porous hollow microspheres [J]. Materials Science and Engineering: B2024299: 116937.
[44]
LIU P GAO S ZHANG G, et al. Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption [J]. Advanced Functional Materials202131(27): 2102812
[45]
SU X WANG J ZHANG X, et al. Synergistic effect of polyhedral iron-cobalt alloys and graphite nanosheets with excellent microwave absorption performance [J]. Journal of Alloys and Compounds2020829: 154426.
[46]
DENG K WU H LI Y, et al. The resin-ceramic-based Fe3O4/graphite composites rapidly fabricated by selective laser sintering for integration of structural-bearing and broadband electromagnetic wave absorption [J]. Journal of Alloys and Compounds2023943: 169120.
[47]
YANG Z WU H ZHANG R, et al. Effect of graphene/spherical graphite ratio on the properties of PLA/TPU composites [J]. Polymers202214(13): 2538.
[48]
AMBROSI A PUMERA M. 3D-printing technologies for electrochemical applications [J]. Chemical Society Reviews201645(10): 2740-2755.
[49]
FOSTER C W ELBARDISY H M DOWN M P, et al. Additively manufactured graphitic electrochemical sensing platforms [J]. Chemical Engineering Journal2020381: 122343.
[50]
ROCHA D P FOSTER C W MUNOZ R A A, et al. Trace manganese detection via differential pulse cathodic stripping voltammetry using disposable electrodes: additively manufactured nanographite electrochemical sensing platforms [J]. Analyst2020145(9): 3424-3430.
[51]
DE FARIA L V NASCIMENTO S F L DO VILLAFUERTE L M, et al. 3D printed graphite-based electrode coupled with batch injection analysis: an affordable high-throughput strategy for atorvastatin determination [J]. Talanta2023265: 124873.
[52]
CHEN Y LI S LIN S, et al. Promising energy-storage applications by flotation of graphite ores: a review [J]. Chemical Engineering Journal2023454: 139994.
[53]
SUN K WEI T S AHN B Y, et al. 3D printing of interdigitated Li‐ion microbattery architectures [J]. Advanced Materials201325(33): 4539-4543.
[54]
BAO P LU Y TAO P, et al. 3D printing PEDOT-CMC-based high areal capacity electrodes for Li-ion batteries [J]. Ionics202127(7): 2857-2865.
[55]
ZHOU S USMAN I WANG Y, et al. 3D printing for rechargeable lithium metal batteries [J]. Energy Storage Materials202138: 141-156.
[56]
LIU C ZHAO N XU K, et al. High-performance LiFePO4 and SiO@C/graphite interdigitated full lithium-ion battery fabricated via low temperature direct write 3D printing [J]. Materials Today Energy202229: 101098.
[57]
XU K ZHAO N LI Y, et al. 3D printing of ultrathick natural graphite anodes for high-performance interdigitated three-dimensional lithium-ion batteries [J]. Electrochemistry Communications2022139: 107312.
[58]
LI M ZHOU S CHENG L, et al. 3D printed supercapacitor: techniques, materials, designs, and applications [J]. Advanced Functional Materials202333(1): 2208034.
[59]
LIBICH J MACA J VONDRAK J, et al. Supercapacitors: properties and applications [J]. Journal of Energy Storage201817: 224-227.
[60]
DU J CAO Q TANG X, et al. 3D printing-assisted gyroidal graphite foam for advanced supercapacitors [J]. Chemical Engineering Journal2021416: 127885.
[61]
AEBY X POULIN A SIQUEIRA G, et al. Fully 3D printed and disposable paper supercapacitors [J]. Advanced Materials202126(33): 2101328.

基金

自治区重点研发计划项目(2023BEE01010)

评论

PDF(827 KB)

Accesses

Citation

Detail

段落导航
相关文章

/