
石墨及其复合材料3D打印研究进展
何玉玉, 刘轶, 张芸芸, 周志军, 刘于青, 王勇, 罗凯, 剡秀秀, 曹继伟, 陈张伟
石墨及其复合材料3D打印研究进展
Research progress in 3D printing of graphite and its composite materials
3D打印作为一种新型制造技术,已被广泛应用于各类材料的成型制造,并展现出巨大的发展潜力。石墨具有优良的耐高温性、导电性、导热性、热稳定性和化学稳定性,在冶金化工、能源行业、航空航天、核工业等领域得到广泛应用。以石墨及其复合材料作为基体,利用3D打印技术生产制造石墨基产品,能够缩短生产周期、提高材料利用率、减少石墨粉尘污染,为高性能复杂形状石墨的个性化定制及产业化应用提供了一种高效经济的综合解决方案。本文重点阐述了石墨及其复合材料的3D打印技术,分析了各种技术的优缺点,并介绍了3D打印成型的石墨产品的性能和应用,论述了石墨及其复合材料在3D打印领域发展过程中的机遇和挑战,并对未来的发展提出了展望和建议,石墨3D打印技术的发展还需开发扩展石墨复合材料的种类和新型打印装备及其配套设备,并在传统石墨的基础上进行3D打印石墨后处理技术研发。
3D printing, as a new manufacturing technology, has been widely applied in the forming and manufacturing of various materials with enormous development prospects. Graphite has excellent high-temperature resistance, conductivity, thermal conductivity, thermal stability, and chemical stability, widely used in fields such as metallurgy, energy industry, aerospace, and nuclear industry. Using graphite and its composite materials as the matrix and 3D printing technology to produce graphite products can reduce the graphite production cycle, improve material utilization, reduce graphite dust pollution, and provide an efficient and economical comprehensive solution for personalized customization and industrial application of high-performance and complex shaped graphite. This article focuses on the 3D printing technology of graphite and its composite materials, analyzes and discusses the advantages and disadvantages of each technology, introduces the performance and application of graphite products formed by 3D printing, discusses the opportunities and challenges of graphite and its composite materials in the development process of 3D printing, and puts forward expectations and prospects for this. The development of graphite 3D printing technology needs to develop the types of expansion of graphite composite materials and new printing equipment and its supporting equipment, and conduct 3D printed graphite post -processing technology based on traditional graphite process.
graphite 3D printing / size accuracy / microwave absorption / graphite electrode
TB33 / TQ174.5 / TP391.73
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
刘宸希,康红军,吴金珠,等.3D打印技术及其在医疗领域的应用[J].材料工程,2021,49(6):66-76.
|
[15] |
|
[16] |
史雨菲,李小丽,何天翊,等.石墨烯基材料在3D打印领域的研究进展[J].电镀与精饰, 2023, 45 (7): 74-83.
|
[17] |
刘岩松,李文博,刘永胜,等.3D打印陶瓷铸型研究与应用进展[J].材料工程,2022,50(7):18-29.
|
[18] |
陈晖,孙玲胜,钱伟栋,等.选择性激光烧结聚醚砜树脂/碳纤维/炭黑复合材料的性能研究[J].中国塑料, 2023, 37(9):14-18.
|
[19] |
荆奕菲,吴海华.球形石墨碎片选择性激光烧结成形工艺实验研究[J].中国标准化,2022(3):196-200.
|
[20] |
|
[21] |
耿莉,成溯,付前刚,等.碳/碳复合材料的激光烧蚀行为与机制[J].复合材料学报,2022, 39(9):4337-4343.
|
[22] |
吴海华,贺俊超,钟磊,等.微热压增材制造轻质、高强度、低导热碳化硅/石墨复合材料[J].复合材料学报,2022,39(7):3542-3553.
|
[23] |
黄才华,彭建辉,任超群,等.选择性激光烧结石墨件后处理工艺研究[J].应用激光,2019,39(1):61-67.
|
[24] |
陈晖,谭博,孙玲胜,等.基于SLS的碳纤维/石墨混杂填料形状对聚醚砜树脂烧结件性能的影响[J].工程塑料应用,2023,51(6):129-134.
|
[25] |
杨金华,艾莹珺,陈子木,等.熔融渗硅对石墨材料微观结构及性能的影响[J].硅酸盐通报,2021,40(1):231-240,251.
|
[26] |
吴海华,康怡,刘智,等.选择性激光烧结制备石墨/碳化硅复合高温熔盐封装材料的性能[J]. 热处理学报,2023,44(6):28-36.
|
[27] |
|
[28] |
|
[29] |
薛周航,李庆业,张伟,等.熔融沉积成型用聚乙烯/膨胀石墨导热复合材料的制备及性能[J].科学与工程,2020,36(9):88-96.
|
[30] |
|
[31] |
|
[32] |
赵琛,蔡嘉伟,张百成,等.黏结剂喷射3D打印关键技术[J].材料工程,2023,51(5):14-26.
|
[33] |
|
[34] |
|
[35] |
|
[36] |
姜波,郭新宇,焦欢,等.木质素基复合材料的直写式3D打印及其功能应用[J].复合材料学报,2023,40(4):1913-1923.
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
/
〈 |
|
〉 |