复合双极板的接触角调控及性能优化

张璐瑶, 郑俊生, 樊润林, 明平文

PDF(3512 KB)
PDF(3512 KB)
材料工程 ›› 2025, Vol. 53 ›› Issue (6) : 218-226. DOI: 10.11868/j.issn.1001-4381.2024.000055
研究论文

复合双极板的接触角调控及性能优化

作者信息 +

Contact angle regulation and performance optimization of composite bipolar plates

Author information +
History +

摘要

质子交换膜燃料电池(PEMFC)能量转换效率高,发电效率受负载变化影响小,有害物和碳排放少。双极板是其关键结构部件之一,承担传递电子、分配气体、电池内水管理、支撑膜电极组件等作用。复合双极板有质轻、耐腐、成本低等优势,受到了较多的关注。然而,为了保持燃料电池的稳定运行,应保证膜电极充分润湿的情况下,确保积累在流道内的液态水顺利排出,这对于双极板的表面特性提出了新的要求。对于复合石墨板而言,可以通过极板组分与制备工艺的改变,实现接触角的调节,进而调控电池的水、气状况。本工作在鳞片石墨-树脂复合材料中,加入化学气相沉积制备的纳米碳纤维(CF-CVD)作添加剂,调控复合双极板的亲水性。同时,通过改变鳞片石墨粒径,验证其对复合双极板亲水性调控的影响。结果表明,极板表面的亲水性随着碳纤维含量的升高而增强,接触角降低幅度可达10.28°。鳞片石墨粒径影响复合双极板的接触角调控效果,为配合CF-CVD实现极板最佳亲水性,应选择500~1500目石墨作为导电基材。CF-CVD含量为3%、鳞片石墨为1000目的亲水复合双极板综合性能最佳,电导率达到239.33 S/cm,抗弯强度达到73.47 MPa。

Abstract

Proton exchange membrane fuel cells (PEMFC) have the advantages of high energy conversion efficiency, low impact of load changes on power generation efficiency, and low harmful substances and carbon emissions. The bipolar plate is one of the key structural components of PEMFC and undertakes the functions of electron transfer, gas distribution, internal water management, and supporting membrane electrode components. Composite bipolar plates have advantages such as light weight, corrosion resistance, and low cost, and have received more attention. However, to maintain the stable operation of fuel cells, it is necessary that water accumulated in the flow channel can be smoothly discharged while ensuring membrane wetting. This poses new requirements for the surface characteristics of bipolar plates. For composite graphite plates, they can adjust the contact angle and regulate the water and gas conditions of PEMFCs by changing their composition and preparation process. This article introduces the addition of carbon nanofibers prepared by chemical vapor deposition (CF-CVD) in the flake graphite-resin composite materials to regulate the hydrophilicity of composite bipolar plates. Additionally, the impact of varying flake graphite particle sizes on the hydrophilicity regulation of these plates is examined. The results reveal that increased carbon fiber content enhances the surface hydrophilicity of bipolar plates, with the smallest contact angle achieving 10.28°. The particle size of flake graphite affects the contact angle of composite bipolar plates. To optimize the hydrophilicity of bipolar plates with CF-CVD, 500-1500 mesh graphite is recommended as the conductive substrate. Specifically, a CF-CVD content of 3%, combined with 1000 mesh flake graphite, yields a hydrophilic composite bipolar plate with superior comprehensive performance, exhibiting a conductivity of 239.33 S/cm and a bending strength of 73.47 MPa.

关键词

复合双极板 / 接触角 / 纳米碳纤维 / 鳞片石墨 / 水管理

Key words

composite bipolar plate / contact angle / carbon nanofiber / flake graphite / water management

中图分类号

TB34 / TM911.4 / TQ127.11

引用本文

导出引用
张璐瑶 , 郑俊生 , 樊润林 , . 复合双极板的接触角调控及性能优化. 材料工程. 2025, 53(6): 218-226 https://doi.org/10.11868/j.issn.1001-4381.2024.000055
Luyao ZHANG, Junsheng ZHENG, Runlin FAN, et al. Contact angle regulation and performance optimization of composite bipolar plates[J]. Journal of Materials Engineering. 2025, 53(6): 218-226 https://doi.org/10.11868/j.issn.1001-4381.2024.000055

参考文献

1
王倩倩, 郑俊生, 裴冯来,等. 质子交换膜燃料电池膜电极的结构优化[J]. 材料工程201947(4): 1-14.
WANG Q Q ZHENG J S PEI F L, et al. Structural optimization of PEMFC membrane electrode assembly[J]. Journal of Materials Engineering201947(4): 1-14.
2
李伟, 李争显, 刘林涛,等. 多孔金属流场双极板研究进展[J]. 材料工程202048(5): 31-40.
LI W LI Z X LIU L T, et al. Recent progress of porous metal filed in bipolar plate[J]. Journal of Materials Engineering202048(5): 31-40.
3
孙鹏, 李忠芳, 王传刚,等. 燃料电池用高温质子交换膜的研究进展[J]. 材料工程202149(1): 23-34.
SUN P LI Z F WANG C G, et al. Research progress of high temperature proton exchange membranes applied in fuel cells[J]. Journal of Materials Engineering202149(1): 23-34.
4
TANG A CRISCI L BONVILLE L, et al. An overview of bipolar plates in proton exchange membrane fuel cells[J]. Journal of Renewable and Sustainable Energy202113(2): 1-18.
5
BOYACI F G ISIL I G. Effect of surface wettability of polymer composite bipolar plates on polymer electrolyte membrane fuel cell performances[J]. International Journal of Hydrogen Energy201338(10): 4089-4098.
6
BOYACI F G ISIL I G OSMAN O. Analysis of the polymer composite bipolar plate properties on the performance of PEMFC (polymer electrolyte membrane fuel cells) by RSM (response surface methodology)[J]. Energy201355: 1067-1075.
7
KAHVECI E E TAYMAZ I. Experimental study on performance evaluation of PEM fuel cell by coating bipolar plate with materials having different contact angle[J]. Fuel2019253: 1274-1281.
8
胡鸣若,朱新坚,顾安忠,等. 质子交换膜燃料电池的水热管理[J]. 电池200333(4): 258-260.
HU M R ZHU X J GU A Z, et al. Water and heat management problems in PEM fuel cell[J]. Battery Bimonthly200333(4): 258-260.
9
宋满存. 质子交换膜燃料电池水淹过程研究及故障诊断系统设计[D]. 北京: 清华大学,2013.
SONG M C. Research of flooding process and design of fault diagnosis system for PEM fuel cellls[D]. Beijing: Tsinghua University,2013.
10
XIE F SHAO Z G HOU M, et al. Recent progresses in H-2-PEMFC at DICP[J]. Journal of Energy Chemistry201936: 129-140.
11
WEE J H. Applications of proton exchange membrane fuel cell systems[J]. Renewable & Sustainable Energy Reviews200711(8): 1720-1738.
12
LIU Y T SONG H Y YAO T T, et al. Effects of carbon nanotube length on interfacial properties of carbon fiber reinforced thermoplastic composites[J]. Journal of Materials Science202055(32): 15467-15480.
13
ZHENG J S PENG Y H FAN R L, et al. Study on carbon matrix composite bipolar plates with balance of conductivity and flexural strength[J]. Chinese Chemical Letters202334(5): 1-5.
14
LIN C H LEE J R TENG P J, et al. A hydrophobic surface based on a Ni-P-PTFE coating on a metallic bipolar plate[J]. International Journal of Electrochemical Science201813(3): 3147-3160.
15
谭茜匀,王艳丽. 质子交换膜燃料电池不锈钢双极板的腐蚀行为及其表面防护的研究进展[J]. 表面技术202150(8): 192-200.
TAN Q Y WANG Y L. Research progress on corrosion behavior and surface protection of stainless steel bipolar plate of proton exchange membrane fuel cell[J]. Surface Technology202150(8): 192-200.
16
YAN P F YING T LI Y X, et al. A novel high corrosion-resistant polytetrafluoroethylene /carbon cloth/Ag coating on magnesium alloys as bipolar plates for light-weight proton exchange membrane fuel cells[J]. Journal of Power Sources2021484: 1-9.
17
ZHANG P C HAN Y T SHI J F, et al. ZrC Coating Modified Ti bipolar plate for proton exchange membrane fuel cell[J]. Fuel Cells202020(5): 540-546.
18
LV B SHAO Z G HE L, et al. A novel graphite/phenolic resin bipolar plate modified by doping carbon fibers for the application of proton exchange membrane fuel cells[J]. Progress in Natural Science-Materials International202030(6): 876-881.
19
DURSUN B YAREN F UNVEROGLU B, et al. Expanded graphite-epoxy-flexible silica composite bipolar plates for PEM fuel cells[J]. Fuel Cells201414(6): 862-867.
20
NOWAK A P SALGUERO T T KIRBY K W, et al. A conductive and hydrophilic bipolar plate coating for enhanced proton exchange membrane fuel cell performance and water management[J]. Journal of Power Sources2012210: 138-145.
21
IJAODOLA O S EL- HASSAN Z OGUNGBEMI E, et al. Energy efficiency improvements by investigating the water flooding management on proton exchange membrane fuel cell (PEMFC)[J]. Energy2019179: 246-267.
22
ROSENGARTEN G HARVIE D J E COOPER-WHITE J. Contact angle effects on microdroplet deformation using CFD[J]. Applied Mathematical Modelling200630(10): 1033-1042.
23
KUMBUR E C SHARP K V MENCH M M. Validated leverett approach for multiphase flow in PEFC diffusion media[J]. Journal of The Electrochemical Society2007154(12):B1313-B1324.
24
曾浩东. PEMFC用石墨/聚酰亚胺-聚醚醚酮树脂复合双极板的制备与性能研究[D]. 长沙: 中南大学,2022.
ZENG H D. Preparation and properties of graphite/polyimide polyether ketone composite bipolar plate for PEMFC[D]. Changsha: Central South University,2022.
25
蒋华义,张亦翔,梁爱国,等. 材料表面润湿性的影响因素及预测模型[J]. 表面技术201847(1): 60-65.
JIANG H Y ZHANG Y X LIANG A G, et al. Influencing factors and prediction model of material surface wettability[J]. Surface Technology201847(1): 60-65.
26
冉红孟,廖秋慧,陶振刚,等. PP/碳纤维复合材料力学性能的研究[J]. 工程塑料应用201543(2): 47-50.
RAN H M LIAO Q H TAO Z G, et al. Research on mechanical properties of carbon fiber reinforced PP composites[J]. Engineering Plastics Application201543(2): 47-50.
27
LEE J H JANG Y K HONG C E, et al. Effect of carbon fillers on properties of polymer composite bipolar plates of fuel cells[J]. Journal of Power Sources2009193(2): 523-529.
28
陈惠,刘洪波,夏笑虹,等. 石墨/酚醛树脂复合材料双极板的制备与性能[J]. 复合材料学报201532(3): 744-755.
CHEN H LIU H B XIA X H, et al. Preparation and properties of graphite/phenolic resin composite bipolar plate[J]. Acta Materiae Compositae Sinica201532(3): 744-755.
29
王奔,于晓启,赵国旗,等. 微胶囊层间增韧碳纤维/环氧树脂复合材料力学性能的超声导波评价[J]. 复合材料学报202138(3): 788-796.
WANG B YU X Q ZHAO G Q, et al. Ultrasonic guided wave-based evaluation for mechanical properties of interlaminar toughening carbon fiber/epoxy composites with microcapsules[J]. Acta Materiae Compositae Sinica202138(3): 788-796.
30
伊廷会. 酚醛树脂高性能化改性研究进展[J]. 热固性树脂20014: 29-33.
YIN T H. Modification development of phenolic resin[J]. Thermosetting Resin20014: 29-33.
31
DHAKATE S R SHARMA S CHAUHAN N, et al. CNTs nanostructuring effect on the properties of graphite composite bipolar plate[J]. International Journal of Hydrogen Energy201035(9): 4195-4200.
32
LEE H E HAN S H SONG S A, et al. Novel fabrication process for carbon fiber composite bipolar plates using sol gel and the double percolation effect for PEMFC[J]. Composite Structures2015134: 44-51.
33
NAJI A KRAUSE B PÖTSCHKE P, et al. Hybrid conductive filler/polycarbonate composites with enhanced electrical and thermal conductivities for bipolar plate applications[J]. Polymer Composites201840(8): 3189-3198.
34
U.S. Department of Energy. Department of energy hydrogen program [EB/OL]. [2020-11-12].

基金

国家重点研发计划项目(2018YFB1502504)

评论

PDF(3512 KB)

Accesses

Citation

Detail

段落导航
相关文章

/