超声能场辅助激光熔化沉积TiC/Ti6Al4V复合材料的组织及性能

王建东, 赵子昂, 曾禹周, 薛宇, 窦文浩, 王大鹏, 管瑶

PDF(8226 KB)
PDF(8226 KB)
材料工程 ›› 2025, Vol. 53 ›› Issue (6) : 126-135. DOI: 10.11868/j.issn.1001-4381.2024.000052
研究论文

超声能场辅助激光熔化沉积TiC/Ti6Al4V复合材料的组织及性能

作者信息 +

Microstructure and properties of TiC/Ti6Al4V composites by laser melting deposition assisted by ultrasonic energy field

Author information +
History +

摘要

采用同步超声能场辅助激光熔化沉积技术制备了TiC/Ti6Al4V复合材料,研究同步超声能场处理对TiC体积分数分别为5%和20%复合材料的显微组织及性能的影响。结果表明:沉积态复合材料中含有不均匀分布的未溶TiC颗粒以及原位TiC,其中5%TiC/Ti6Al4V(体积分数,下同)复合材料中含有较大尺寸的链条状共晶TiC,20%TiC/Ti6Al4V复合材料中含有较大尺寸的枝晶状初生TiC。施加同步超声能场处理后,复合材料中的未溶TiC颗粒分布均匀性得到改善;原位TiC增强相得到细化,链条状共晶TiC转变为颗粒状共晶TiC,枝晶状初生TiC尺寸减小。同步超声能场处理使5%TiC/Ti6Al4V和20%TiC/Ti6Al4V的显微硬度分别从406.5HV0.2和498.4HV0.2提高到414.2HV0.2和539.1HV0.2,磨损率分别从1.82×10-6 mm3·m-1·N-1和1.04×10-6 mm3·m-1·N-1降低到1.78×10-6 mm3·m-1·N-1和9.48×10-7 mm3·m-1·N-1,5%TiC/Ti6Al4V的抗拉强度从1075.23 MPa提高到1116.31 MPa,屈服强度从1021.51 MPa提高到1043.12 MPa,断裂应变从1.27%提高到1.45%,实现强度与塑性的同时提升。

Abstract

TiC/Ti6Al4V composites are prepared by synchronous ultrasonic energy field-assisted laser melting deposition. The effects of synchronous ultrasonic energy field treatment on the microstructure and properties of the composites with TiC volume fraction of 5% and 20%, respectively, are studied. The results show that the as-built composites contain inhomogeneous distributed undissolved TiC particles and in-situ TiC particles, among which 5%TiC/Ti6Al4V (volume fraction,the same below)composites contain chain shaped eutectic TiC with larger size, and 20%TiC/Ti6Al4V composites contain dendritic primary TiC with larger size. With the application of synchronous ultrasonic energy field treatment, the distribution uniformity of undissolved TiC particles in the composite is improved. Moreover, the in-situ TiC reinforcing phase is refined, where the chain shaped eutectic TiC transforms to granular eutectic TiC, and the size of dendritic primary TiC decreases. Due to the effect of synchronous ultrasonic energy field treatment, the microhardness of 5%TiC/Ti6Al4V and 20%TiC/Ti6Al4V increases from 406.5HV0.2 and 498.4HV0.2 to 414.2HV0.2 and 539.1HV0.2, respectively. The wear rates reduce from 1.82 × 10-6 mm3·m-1·N-1 and 1.04×10-6 mm3·m-1·N-1 to 1.78×10-6 mm3·m-1·N-1 and 9.48×10-7 mm3·m-1·N-1, respectively. The tensile strength of the 5%TiC/Ti6Al4V increases from 1075.23 MPa to 1116.31 MPa, the yield strength increases from 1021.51 MPa to 1043.12 MPa, and the fracture strain increases from 1.27 % to 1.45 %, which realizes the simultaneous improvement of strength and plasticity.

关键词

激光熔化沉积 / 超声能场 / TiC/Ti6Al4V复合材料 / 显微组织 / 性能

Key words

laser melting deposition / ultrasonic energy field / TiC/Ti6Al4V composites / microstructure / property

中图分类号

TG146.2+3 / TB33

引用本文

导出引用
王建东 , 赵子昂 , 曾禹周 , . 超声能场辅助激光熔化沉积TiC/Ti6Al4V复合材料的组织及性能. 材料工程. 2025, 53(6): 126-135 https://doi.org/10.11868/j.issn.1001-4381.2024.000052
Jiandong WANG, Ziang ZHAO, Yuzhou ZENG, et al. Microstructure and properties of TiC/Ti6Al4V composites by laser melting deposition assisted by ultrasonic energy field[J]. Journal of Materials Engineering. 2025, 53(6): 126-135 https://doi.org/10.11868/j.issn.1001-4381.2024.000052

参考文献

[1]
TABRIZI S G SAJJADI S A BABAKHANI A,et al .Influence of spark plasma sintering and subsequent hot rolling on microstructure and flexural behavior of in-situ TiB and TiC reinforced Ti6Al4V composite[J].Materials Science and Engineering:A2015624:271-278.
[2]
HAYAT M D SINGH H HE Z,et al .Titanium metal matrix composites:an overview[J].Composites Part A2019121:418-438.
[3]
谢勇,王福德,从保强,等 .电弧增材制造Ti-6Al-4V组织和力学性能调控研究进展[J].航空制造技术202063(22):54-62.
XIE Y WANG F D CONG B Q,et al .A review of microstructure and mechanical properties in wire arc additive manufactured titanium alloys[J].Aeronautical Manufacturing Technology202063(22):54-62.
[4]
XIA M LIU A HOU Z,et al .Microstructure growth behavior and its evolution mechanism during laser additive manufacture of in-situ reinforced (TiB+TiC)/Ti composite[J].Journal of Alloys and Compounds2017728:436-444.
[5]
MAHAMOOD R M AKINLABI E T SHUKLA M,et al .Scanning velocity influence on microstructure, microhardness and wear resistance performance of laser deposited Ti6Al4V/TiC composite[J].Mater Design201350:656-666.
[6]
XING Y Z JIANG C P HAO J M .Time dependence of microstructure and hardness in plasma carbonized Ti-6Al-4V alloys[J].Vacuum201395:12-17.
[7]
ZENG Y WANG J LIU X,et al .Laser additive manufacturing of ceramic reinforced titanium matrix composites: a review of microstructure, properties, auxiliary processes, and simulations[J].Composites Part A2024177:107941.
[8]
LIU Z ZHAO D WANG P,et al .Additive manufacturing of metals: microstructure evolution and multistage control[J].Journal of Materials Science & Technology2022100:224-236.
[9]
LI L WANG J LIN P,et al .Microstructure and mechanical properties of functionally graded TiCp/Ti6Al4V composite fabricated by laser melting deposition[J].Ceramics International201743:16638-16651.
[10]
WANG J LI L TAN C,et al .Microstructure and tensile properties of TiCp/Ti6Al4V titanium matrix composites manufactured by laser melting deposition[J].Journal of Materials Processing Technology2018252:524-536.
[11]
WANG J LI L LIN P,et al .Effect of TiC particle size on the microstructure and tensile properties of TiCp/Ti6Al4V composites fabricated by laser melting deposition[J].Optics & Laser Technology2018105:195-206.
[12]
ZENG Y WANG J WEI J,et al .Microstructure and properties of inter/inner-layer regions of TiCp/Ti6Al4V composites manufactured by laser melting deposition[J].Materials Letters2022316:131989.
[13]
TODARO C J EASTON M A QIU D,et al .Grain structure control during metal 3D printing by high-intensity ultrasound[J].Nature Communications202011:142.
[14]
YUAN D SHAO S GUO C,et al .Grain refining of Ti-6Al-4V alloy fabricated by laser and wire additive manufacturing assisted with ultrasonic vibration[J].Ultrasonics Sonochemistry202173:105472.
[15]
XU D WANG J WANG Z,et al .Elimination of defects in laser metal deposited TiCp/Ti6Al4V composite by synchronous ultrasonic impact treatment[J].Materials Letters2023347:134635.
[16]
BHATNAGAR S MAGHAM H S MULLICK S,et al .Evaluation of microstructure and thermal history for TiC/Inconel 625 MMC deposition through pre-placed laser cladding method with and without the application of ultrasonic vibration[J].CIRP Journal of Manufacturing Science and Technology202341:453-464.
[17]
ZHANG S ZHAO Y CHENG X,et al .High-energy ultrasonic field effects on the microstructure and mechanical behaviors of A356 alloy[J].Journal of Alloys and Compounds2009470:168-172.
[18]
WANG J ZENG Y QI X,et al .Graded microstructure and properties of TiCp/Ti6Al4V composites manufactured by laser melting deposition[J].Ceramics International202248:6985-6997.
[19]
WANG J TANG L XUE Y,et al .Microstructure and properties of (diamond + TiC) reinforced Ti6Al4V titanium matrix composites manufactured by directed energy deposition[J].Journal of Materials Research and Technology202428:3110-3120.
[20]
WANG X H LIU S S ZHAO G L,et al . In-situ formation ceramic particles reinforced Fe-based composite coatings produced by ultrasonic assisted laser melting deposition processing[J].Optics and Laser Technology2021136:106746.
[21]
LEI Y SUN R TANG Y,et al .Numerical simulation of temperature distribution and TiC growth kinetics for high power laser clad TiC/NiCrBSiC composite coatings[J].Optics and Laser Technology201244:1141-1147.
[22]
金云学,曾松岩,张二林,等 .TiC/Ti合金中共晶TiC形态的形成机制研究[J].稀有金属材料与工程200332(6):451-455.
JIN Y X ZENG S Y ZHANG E L,et al .Forming mechanism of morphologies of eutectic TiC in TiC/Ti alloys[J].Rare Metal Materials and Engineering200332(6):451-455.
[23]
ZHANG M ZHAO G L WANG X H,et al .Microstructure evolution and properties of in-situ ceramic particles reinforced Fe-based composite coating produced by ultrasonic vibration assisted laser cladding processing[J].Surface & Coatings Technology2020403:126445.
[24]
李德英,张坚,赵龙志,等 .CA法研究超声频率对激光熔覆凝固组织的影响[J].兵器材料科学与工程201841:93-96.
LI D Y ZHANG J ZHAO L Z,et al .Effect of ultrasonic frequency on solidification microstructure in laser cladding using CA method[J].Ordnance Material Science and Engineering201841:93-96.
[25]
高国富,郭子龙,李康,等 .超声振动辅助Ni60WC25粉末激光熔覆技术[J].金属热处理201944:172-175.
GAO G F GUO Z L LI K,et al .Ultrasonic vibration assisted Ni60WC25 powder laser cladding technology[J].Heat Treatment of Metals201944:172-175.
[26]
LI J W MOMONO T FU Y,et al .Effect of ultrasonic stirring on temperature distribution and grain refinement in Al-1.65%Si alloy melt[J].Transactions of Nonferrous Metals Society of China200717:691-697.
[27]
李德英,赵龙志,张坚,等 .超声振动对激光熔覆TiC/FeAl复合涂层温度场的影响[J].金属热处理201540:190-194.
LI D Y ZHAO L Z ZHANG J,et al .Influence of ultrasonic vibration on temperature field of TiC/FeAl composite coating in laser cladding[J].Heat Treatment of Metals201540:190-194.
[28]
WANG J XUE Y XU D,et al .Effects of layer-by-layer ultrasonic impact treatment on microstructure and mechanical properties of 304 stainless steel manufactured by directed energy deposition[J].Additive Manufacturing202368: 103523.
[29]
WANG J ZENG Y FAN W,et al .Microstructure and tensile properties of TiCp/Ti6Al4V composites by laser melting deposition with different dissolving degrees of TiC[J].Ceramics International202248(23):34650-34657.
[30]
ZHAO C PARAB N D LI X,et al .Critical instability at moving keyhole tip generates porosity in laser melting[J].Science2020370(6520):1080-1086.
[31]
WEI Z J CAO L WANG H W,et al .Microstructure and mechanical properties of TiC/Ti-6Al-4V composites processed by in situ casting route[J].Materials Science and Technology201127:1321-1327.
[32]
CHEN G WAN J HE N,et al .Strengthening mechanisms based on reinforcement distribution uniformity for particle reinforced aluminum matrix composites[J].Transactions of Nonferrous Metals Society of China201828(12):2395-2400.
[33]
YE W WEI Q ZHANG L,et al .Macroporous diamond foam: a novel design of 3D interconnected heat conduction network for thermal management[J].Materials & Design2018156:32-41.
[34]
GALLO S C ALAM N O’DONNELL RIn-situ synthesis of titanium carbides in iron alloys using plasma transferred arc welding[J].Surface & Coatings Technology2013225:79-84.
[35]
BANDYOPADHYAY A KRISHNA B V XUE W,et al .Application of laser engineered net shaping (LENS) to manufacture porous and functionally graded structures for load bearing implants[J].Journal of Materials Science: Materials in Medicine200920:29-34.

基金

国家自然科学基金项目(52205343)
航空科学基金项目(2022Z0550P6001)
中央高校基本科研业务费(3072024JJ1004)
中国博士后科学基金面上资助项目(2019M651259)

评论

PDF(8226 KB)

Accesses

Citation

Detail

段落导航
相关文章

/