GH4065A高温合金塑性连接过程中界面组织演变行为

苏力东, 孟庆琪, 宁永权, 黄烁, 张文云, 张北江

PDF(10862 KB)
PDF(10862 KB)
材料工程 ›› 2025, Vol. 53 ›› Issue (1) : 99-109. DOI: 10.11868/j.issn.1001-4381.2023.000846
研究论文

GH4065A高温合金塑性连接过程中界面组织演变行为

作者信息 +

Interfacial microstructure evolution behavior during plastic deformation bonding of GH4065A superalloy

Author information +
History +

摘要

为了解GH4065A合金在塑性连接过程中界面组织的演变规律,在1050~1110 ℃,20~40 MPa和20~35 min的条件下,开展GH4065A合金塑性连接实验。通过OM,SEM,EBSD表征接头中连接区与未连接区之间的特殊位置,深入研究连接温度、保载时间、连接压力对界面微观组织的影响规律,重点关注塑性连接时界面上再结晶晶粒的形成以及原始界面的愈合过程。结果表明:提高连接温度、压力,延长保载时间有利于实现界面愈合,但与此同时也会促进接头晶粒的粗化,在1080 ℃,30 MPa,30 min的参数下所得的塑性连接接头组织均匀且无明显缺陷,具有良好的冶金结合效果。在界面冶金结合形成的过程中,发生晶界弓出形核为主的非连续性动态再结晶,存在亚晶渐进性转动形核的连续性动态再结晶。随着塑性连接的持续进行,再结晶晶粒形核并向原始界面生长,从而促进界面的消除。塑性连接致冶金结合形成主要经历初始接触、形核与晶粒长大、接头形成三个阶段。

Abstract

To clarify the evolution of the interfacial microstructure of GH4065A superalloy during plastic deformation bonding, the GH4065A superalloy is bonded under temperatures of 1050-1110 ℃ with the pressure of 20-40 MPa and a time range of 20-35 min. OM,SEM, and EBSD were employed to characterize the special positions between bonding regions and unbinding regions to investigate further the influence of plastic deformation bonding parameters(bonding temperature,holding time,and bonding pressure) on the microstructural evolution of the interface.This study focuses on the nucleation of new recrystallization grains in the bonding area and the healing of the original interface. The results show that increasing the bonding temperature, pressure and the holding time will facilitate the healing of the interface. but at the same time, it will also prompte the coarsening of the grains simultaneously. The joint obtained under 1080 ℃,30 MPa,30 min has uniform microstructure and no obvious defects, exhibiting an excellent metallurgical bonding effect.The results of EBSD show that the discontinuous dynamic recrystallization characterized by strain-induced grain boundary bulging is the dominant mechanism, and continuous dynamic recrystallization characterized by subgrain progressive rotation occurs in the bonding process. Moreover, the dynamic recrystallization(DRX)nuclei will grow toward the interface with ongoing deformation, contributing to the healing of the original interface.The metallurgical bonding caused by plastic deformation bonding mainly experiences three stages: initial contact, nucleation and grain growth, and joint formation.

关键词

GH4065A高温合金 / 塑性连接 / 界面微观组织 / 动态再结晶 / 界面愈合

Key words

GH4065A superalloy / plastic deformation bonding / interfacial microstructure / dynamic recrystallization / interfacial healing

中图分类号

TG453+.1 / TB31

引用本文

导出引用
苏力东 , 孟庆琪 , 宁永权 , . GH4065A高温合金塑性连接过程中界面组织演变行为. 材料工程. 2025, 53(1): 99-109 https://doi.org/10.11868/j.issn.1001-4381.2023.000846
Lidong SU, Qingqi MENG, Yongquan NING, et al. Interfacial microstructure evolution behavior during plastic deformation bonding of GH4065A superalloy[J]. Journal of Materials Engineering. 2025, 53(1): 99-109 https://doi.org/10.11868/j.issn.1001-4381.2023.000846

参考文献

[1]
曲敬龙, 易出山, 陈竞炜, 等. GH4720Li 合金中析出相的研究进展[J]. 材料工程202048(8): 73-83.
QU J L YI C S CHEN J W, et al. Research progress of precipitated phase in GH4720Li superalloy[J]. Journal of Materials Engineering202048(8): 73-83.
[2]
徐鹤, 汪煜, 刘德林, 等. 粉末高温合金 FGH4095 和 FGH4096 的抗高温氧化性能[J]. 材料工程202351(4):122-131.
XU H WANG Y LIU D L, et al. High temperature oxidation resistance of PM superalloys FGH4095 and FGH4096[J]. Journal of Materials Engineering202351(4):122-131.
[3]
白云瑞, 胡钰昊, 钟燕, 等. GH4096 合金在长期热暴露过程中的组织演化[J]. 金属热处理202046(6):108-113.
BAI Y R HU Y H ZHONG Y, et al. Microstructure evolution of GH4096 alloy during long-term thermal exposure[J]. Heat Treatment of Metals202046(6):108-113.
[4]
赵光普, 黄烁, 张北江, 等. 新一代镍基变形高温合金 GH4065A 的组织控制与力学性能[J]. 钢铁研究学报201527(2): 37-44.
ZHAO G P HUANG S ZHANG B J, et al. Microstructure control and mechanical properties of the newest nickel-based wrought superalloy GH4065A[J]. Journal of Iron and Steel Research201527(2):37-44.
[5]
张北江, 黄烁, 张文云, 等. 变形高温合金盘材及其制备技术研究进展[J]. 金属学报201955(9):1095-1114.
ZHANG B J HUANG S ZHANG W Y, et al. Recent development of nickel-based disc alloys and corresponding cast-wrought processing techniques[J]. Acta Metallurgica Sinica201955(9):1095-1114.
[6]
NING Y YAO Z GUO H, et al. Structural-gradient-materials produced by gradient temperature heat treatment for dual-property turbine disc[J]. Journal of Alloys and Compounds2013557: 27-33.
[7]
SABER E ABD-ELSALAM A. A theoretical model for investigating the thermo-mechanical performance of functionally graded rotating discs with varying grading index values[J]. Forces in Mechanics20228: 100103.
[8]
CAIRO R R SARGENT K A. Twin web disk: a step beyond convention[J]. J. Eng. Gas Turbines Power2002124(2):298-302.
[9]
LI L TANG Z LI H, et al. Multidisciplinary design optimization of twin-web turbine disk with pin fins in inner cavity[J]. Applied Thermal Engineering2019161: 114104.
[10]
张北江, 赵光普, 张文云, 等. 高性能涡轮盘材料 GH4065 及其先进制备技术研究[J]. 金属学报201551(10): 1227-1234.
ZHANG B J ZHAO G P ZHANG W Y, et al. Investigation of high performance disc alloy GH4065 and associated advanced processing techniques[J]. Acta Metallurgica Sinica201551(10):1227-1234.
[11]
ARIASETA A KHAN A K ANDERSSON J, et al. Microstructural study of keyhole TIG welded nickel-based superalloy G27[J]. Materials Characterization2023204: 113178.
[12]
AI Y YAN Y DONG G, et al. Investigation of microstructure evolution process in circular shaped oscillating laser welding of Inconel 718 superalloy[J]. International Journal of Heat and Mass Transfer2023216: 124522.
[13]
赵桐, 唐振云, 刘巧沐,等. GH4065A 合金电子束焊接工艺及接头组织性能[J]. 材料导报202034(22):22105-22110.
ZHAO T TANG Z Y LIU Q M,et al. Electron beam welding process and microstructure and properties of joint of GH4065A alloy[J]. Materials Reports202034(22):22105-22110.
[14]
LIU F C NELSON T W. Grain structure evolution, grain boundary sliding and material flow resistance in friction welding of alloy 718[J]. Materials Science and Engineering: A2018710: 280-288.
[15]
SHI J LIU J JIN F, et al. Diffusion bonding of FGH98 superalloy and DD5 single crystal using pure Ni interlayer[J]. Materials Today Communications202337: 107003.
[16]
ZHANG J Y SUN M Y XU B, et al. Evolution of the interfacial microstructure during the plastic deformation bonding of copper[J]. Materials Science and Engineering: A2019746: 1-10.
[17]
ZHANG J Y XU B SUN M Y, et al. Effect of strain rate on plastic deformation bonding behavior of Ni-based superalloys[J]. Journal of Materials Science & Technology202040: 54-63.
[18]
ZHANG J Y XU B TARIQ N H, et al. Microstructure evolutions and interfacial bonding behavior of Ni-based superalloys during solid state plastic deformation bonding[J]. Journal of Materials Science & Technology202046: 1-11.
[19]
XIONG J YUAN L ZHU Y, et al. Diffusion bonding of nickel-based superalloy GH4099 with pure nickel interlayer[J]. Journal of Materials Science201954(8):6552-6564.
[20]
REN S BAI X LIU S, et al. Interface healing mechanism of fine-grained Ni-Co-based superalloy during hot-compression bonding[J]. Journal of Materials Science & Technology2024173: 45-53.
[21]
ZHANG B WANG Z YU H, et al. Microstructural origin and control mechanism of the mixed grain structure in Ni-based superalloys[J]. Journal of Alloys and Compounds2022900: 163515.
[22]
YU H WANG Z NING Y, et al. DRX mechanisms of a Ni-Co-W type superalloy with typical columnar grains during hot compression[J]. Journal of Alloys and Compounds2023959: 170533.
[23]
MONAJATI H TAHERI A K JAHAZI M, et al. Deformation characteristics of isothermally forged UDIMET 720 nickel-base superalloy[J]. Metallurgical and Materials Transactions A200536: 895-905.
[24]
HUANG K E LOGÉ R E. A review of dynamic recrystallization phenomena in metallic materials[J]. Materials & Design2016111: 548-574.
[25]
XIE B YU H SHENG T, et al. DDRX and CDRX of an as-cast nickel-based superalloy during hot compression at γ′ sub-/super-solvus temperatures[J]. Journal of Alloys and Compounds2019803: 26-30.
[26]
ZHANG B YONGQUAN N ZHAOTIAN W, et al. PPB structure elimination, DRX nucleation mechanisms and grain growth behavior of the 3rd-generation PM superalloy for manufacturing aviation components[J]. Chinese Journal of Aeronautics202437(1):325-344.
[27]
XIE B ZHANG B NING Y, et al. Mechanisms of DRX nucleation with grain boundary bulging and subgrain rotation during the hot working of nickel-based superalloys with columnar grains[J]. Journal of Alloys and Compounds2019786: 636-647.
[28]
XIE B ZHANG B YU H, et al. Microstructure evolution and underlying mechanisms during the hot deformation of 718plus superalloy[J]. Materials Science and Engineering: A2020784: 139334.
[29]
CHEN L ZHANG B YANG Y, et al. Evolution of hot processing map and microstructure of as-forged nickel-based superalloy during hot deformation[J]. Journal of Materials Research and Technology202324: 7638-7653.
[30]
李卓然, 于康, 刘兵, 等. GH4169 合金真空扩散连接接头的组织和性能[J]. 焊接学报201031(11):13-16.
LI Z R YU K LIU B,et al. Microstructure and properties of GH4169 vacuum diffusion bonded joint[J]. Transactions of the China Welding Institution201031(11):13-16.

基金

国家自然科学基金(52175363)

评论

PDF(10862 KB)

Accesses

Citation

Detail

段落导航
相关文章

/