核桃壳静电纺纳米纤维的制备及表征

胡润润, 马晓杰, 向飞, 雷珍, 石爱民, 焦博, 郭芹, 王强

PDF(6232 KB)
PDF(6232 KB)
材料工程 ›› 2025, Vol. 53 ›› Issue (6) : 254-262. DOI: 10.11868/j.issn.1001-4381.2023.000821
研究论文

核桃壳静电纺纳米纤维的制备及表征

作者信息 +

Fabrication and characterization of walnut shell electrospun nanofibers

Author information +
History +

摘要

本研究以核桃壳为原料,采用静电纺丝方法制备核桃壳纳米纤维。利用扫描电镜(SEM)考察了纺丝参数对纳米纤维形貌和直径的影响,借助傅里叶红外光谱仪(FT-IR)、X射线衍射仪(XRD)、热重分析仪(TGA)、电阻率测试仪对核桃壳纳米纤维结构及性能进行表征。结果表明,在纺丝液浓度55%、纺丝电压16 kV、注射速率0.75 mL/h、接收距离14 cm的条件下,能够纺得表面光滑、直径分布均匀、平均直径0.38 μm的核桃壳纳米纤维,该纳米纤维的结构有序性显著提高,在500 ℃条件下的热稳定性提高了1.29倍,电导特性也有所改善。

Abstract

This study endeavors to fabricate and comprehensively characterize electrospun nanofibers derived from walnut shells. Utilizing walnut shells as the primary raw material, the electrospinning technique is employed to generate the nanofibers. The study delves into the impact of various spinning parameters on the morphology and diameter of the resultant nanofibers, employing SEM for detailed examination. Furthermore, FT-IR, XRD, TGA, and resistivity measurements are conducted to elucidate the structure and properties of the walnut shell nanofibers. The findings reveal that under optimized conditions—specifically, a spinning solution concentration of 55%, a spinning voltage of 16 kV, an injection rate of 0.75 mL/h, and a collector distance of 14 cm,smooth-surfaced nanofibers with a uniform diameter distribution and an average diameter of 0.38 μm are successfully produced. Notably, the structural orderliness of these nanofibers is substantially enhanced, and their thermal stability at 500 ℃ exhibits a 1.29-fold improvement compared to the initial state. Additionally, the electrical conductivity of the nanofibers also undergoes a favorable enhancement.

关键词

核桃壳 / 静电纺丝 / 纳米纤维 / 微观结构

Key words

walnut shell / electrospinning / nanofiber / microstructure

中图分类号

Q539+.3 / S664.1

引用本文

导出引用
胡润润 , 马晓杰 , 向飞 , . 核桃壳静电纺纳米纤维的制备及表征. 材料工程. 2025, 53(6): 254-262 https://doi.org/10.11868/j.issn.1001-4381.2023.000821
Runrun HU, Xiaojie MA, Fei XIANG, et al. Fabrication and characterization of walnut shell electrospun nanofibers[J]. Journal of Materials Engineering. 2025, 53(6): 254-262 https://doi.org/10.11868/j.issn.1001-4381.2023.000821

参考文献

1
RANGAPPA S M SIENGCHIN S PARAMESWARANPILLAI J, et al. Lignocellulosic fiber reinforced composites: progress, performance, properties, applications, and future perspectives[J]. Polymer Composites202243(2): 645-691.
2
WANG X X YU G F ZHANG J, et al. Conductive polymer ultrafine fibers via electrospinning: preparation, physical properties and applications[J]. Progress in Materials Science2021115: 100704.
3
XU H Z YAGI S ASHOUR S, et al. A review on current nanofiber technologies: electrospinning, centrifugal spinning, and electro-centrifugal spinning[J]. Macromolecular Materials and Engineering2023308(3): 2200502.
4
XUE J J WU T DAI Y Q, et al. Electrospinning and electrospun nanofibers: methods, materials, and applications[J]. Chemical Reviews2019119(8): 5298-5415.
5
LI D YUE G LI S, et al. Fabrication and applications of multi-fluidic electrospinning multi-structure hollow and core-shell nanofibers[J]. Engineering202213: 116-127.
6
ZHANG Y H LI T S ZHANG S H, et al. Room-temperature, energy storage textile with multicore-sheath structure obtained via in-situ coaxial electrospinning[J]. Chemical Engineering Journal2022436: 135226.
7
CLEETON C KEIROUZ A CHEN X, et al. Electrospun nanofibers for drug delivery and biosensing[J]. ACS Biomaterials Science & Engineering20195(9): 4183-4205.
8
LI M N QIU W W WANG Q, et al. Nitric oxide-releasing tryptophan-based poly(ester urea)s electrospun composite nanofiber mats with antibacterial and antibiofilm activities for infected wound healing[J]. ACS Applied Materials & Interfaces202214(14): 15911-15926.
9
BARBOSA J A B FRANÇA C A GOUVEIA J J S, et al. Eudragit E100/poly(ethylene oxide) electrospun fibers for DNA removal from aqueous solution[J]. Journal of Applied Polymer Science2019136(19): 47479.
10
胡苗苗, 赵昕, 任宝娜,等. 基于静电纺纳米纤维的柔性可穿戴压力传感器的研究进展[J]. 材料工程202351(2): 15-27 .
HU M M ZHAO X REN B N, et al. Research progress in flexible wearable pressure sensors based on electrospinning nanofibers[J]. Journal of Materials Engineering202351(2): 15-27.
11
HAN W J RAO D W GAO H Q, et al. Green-solvent-processable biodegradable poly(lactic acid) nanofibrous membranes with bead-on-string structure for effective air filtration: “kill two birds with one stone”[J]. Nano Energy202297: 107237.
12
AVOSSA J HERWIG G TONCELLI C, et al. Electrospinning based on benign solvents: current definitions, implications and strategies[J]. Green Chemistry202224(6): 2347-2375.
13
RAMAKRISHNA S FUJIHARA K TEO W E, et al. Electrospun nanofibers: solving global issues[J]. Materials Today20069(3): 40-50.
14
KAUSAR A. Polyacrylonitrile-based nanocomposite fibers: a review of current developments [J]. Journal of Plastic Film & Sheeting201935(3): 295-316.
15
QI Y ZHANG X X YANG J X, et al. Effects of the molecular structure from pitch fractions on the properties of pitch-based electrospun nanofibers[J]. Journal of Applied Polymer Science2021138(30): 50728.
16
WANG X ZHANG M Q KOU R, et al. Unique necklace-like phenol formaldehyde resin nanofibers: scalable templating synthesis, casting films, and their superhydrophobic property[J]. Advanced Functional Materials201626(28): 5086-5092.
17
BIAN H X YANG Y Y TU P, et al. Value-added utilization of wheat straw: from cellulose and cellulose nanofiber to all-cellulose nanocomposite film[J]. Membranes202212(5): 475.
18
CHINNAPPAN B A KRISHNASWAMY M XU H Z, et al. Electrospinning of biomedical nanofibers/nanomembranes: effects of process parameters[J]. Polymers202214(18): 3719.
19
MOTTAGHITALAB V FARJAD M. Electrospun cellulosic structure nanofibre based on rice straw[J]. Journal of Polymer Engineering201333(9): 857-873.
20
OTSUKA I NJINANG C N BORSALI R. Simple fabrication of cellulose nanofibers via electrospinning of dissolving pulp and tunicate[J]. Cellulose201724(8): 3281-3288.
21
TAO L HUANG Y B YANG X Q, et al. Flexible anode materials for lithium-ion batteries derived from waste biomass-based carbon nanofibers: Ⅰ effect of carbonization temperature[J]. RSC Advances201813(8): 7102-7109.
22
WEN X XIONG J LEI S L, et al. Diameter refinement of electrospun nanofibers: from mechanism, strategies to applications[J]. Advanced Fiber Materials20224(2): 145-161.
23
HUANG Z M ZHANG Y Z KOTAKI M, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites[J]. Composites Science and Technology200363(15): 2223-2253.
24
HERRERO-HERRERO M GÓMEZ-TEJEDOR J A VALLÉS-LLUCH A. PLA/PCL electrospun membranes of tailored fibres diameter as drug delivery systems[J]. European Polymer Journal201899: 445-455.
25
KEIROUZ A WANG Z REDDY V S, et al. The history of electrospinning: past, present, and future developments[J]. Advanced Materials Technologies20238(11): 2201723.
26
ZHAO Y X ZHANG Z H ZHANG Y, et al. Fabrication of PS/PVDF-HFP multi-level structured micro/nano fiber membranes by one-step electrospinning[J]. Membranes202313(10): 807.
27
GUO X WU B C JIANG Y, et al. Improving enzyme accessibility in the aqueous enzymatic extraction process by microwave-induced porous cell walls to increase oil body and protein yields[J]. Food Hydrocolloids2023147: 109407.
28
吴俊霖, 江慧, 张洪亮, 等. 酚醛纤维形态结构和性能测试分析[J]. 纺织器材202350(5): 27-31.
WU J L JIANG H ZHANG H L, et al. Analysis of morphological structure and performance test of phenolic fiber[J]. Textile Accessories202350(5): 27-31.
29
PASANGULAPATI V RAMACHANDRIYA K D KUMAR A, et al. Effects of cellulose, hemicellulose and lignin on thermochemical conversion characteristics of the selected biomass[J]. Bioresource Technology2012114: 663-669.
30
JEGUIRIM M TROUVE G. Pyrolysis characteristics and kinetics of Arundo donax using thermogravimetric analysis[J]. Bioresource Technology2009100(17): 4026-4031.
31
FINDORAK R FROHLICHOVA M LEGEMZA J, et al. Thermal degradation and kinetic study of sawdusts and walnut shells via thermal analysis[J]. Journal of Thermal Analysis and Calorimetry2016125(2): 689-694.
32
WANG P HOWARD B. Impact of thermal pretreatment temperatures on woody biomass chemical composition, physical properties and microstructure[J]. Energies201711(1): 25.
33
ZHANG X D LI L F OUYANG J, et al. Electroactive electrospun nanofibers for tissue engineering[J]. Nano Today202139: 101196.
34
LIU M DENG N P JU J G, et al. A review: electrospun nanofiber materials for lithium-sulfur batteries[J]. Advanced Functional Materials201929(49): 1905467.

基金

新疆维吾尔自治区重点研发计划一厅厅联动专项(2022B02048)
兵团重点领域科技攻关项目(2023AB002)
十二师科技计划项目(SRS2022004)
中国农业科学院农产品加工研究所创新工程(CAAS-ASTIP-2023-IFST)

评论

PDF(6232 KB)

Accesses

Citation

Detail

段落导航
相关文章

/