
脉冲磁场强化金属材料微观组织演变规律研究进展
王慧鹏, 江聪, 黄艳斐, 郭伟玲, 董丽虹, 邢志国, 王海斗
脉冲磁场强化金属材料微观组织演变规律研究进展
Research progress in microstructure evolution of metal materials strengthened by pulsed magnetic field treatment
脉冲磁场强化技术具有非直接接触、低能耗、绿色环保等优点,在金属材料性能提升方面具有重要的应用前景。本文总结脉冲磁场强化技术在金属材料强化机理、数值模拟和实际应用等方面的研究现状,提出脉冲磁场强化技术亟须突破的瓶颈。脉冲磁场作为一种高场强、周期性磁场,对金属材料的固态相变和液态相变过程均具有明显的强化作用:在固态相变中,脉冲磁场能够改变金属材料的织构和磁畴,促使位错增殖扩散,加快第二相析出,调控析出物析出次序;在液态相变中,脉冲磁场为形核提供能量,破碎粗大枝晶,抑制树状枝晶生长,促进溶质均匀分布,多种作用耦合下提高金属材料性能。数值模拟方法能够再现脉冲磁场强化过程中磁场分布、材料受力和内部结构等方面变化,为研究脉冲磁场强化机理提供重要依据;脉冲磁场强化效果主要取决于磁场的磁场强度、脉冲占空比和作用时间,通过数值模拟技术获得强化效果最优的脉冲磁场参数是脉冲磁场强化金属材料的研究重点之一。目前,脉冲磁场强化技术已应用于金属刀具、涂层制备和金属铸造等领域。为了实现脉冲磁场强化技术的广泛应用,未来还需要在强化机理、脉冲磁场参数设计、脉冲磁场装置小型化等方面开展进一步的研究工作。
The pulsed magnetic field treatment technology has the advantages of indirect contact, low energy consumption, green environmental protection, etc., and has important application prospects in the metal material strengthening. This study summarizes the research status of pulsed magnetic field treatment technology in the strengthening mechanism, numerical simulation, and practical application of metal materials, and puts forward the bottleneck of pulsed magnetic field treatment technology that needs to be broken through. As a kind of high-field strength and periodic magnetic field, the pulsed magnetic field has an obvious strengthening effect on the solid phase transformation and liquid phase transformation of metal materials. The pulsed magnetic field can change the texture and magnetic domain of metal for the solid phase transformation. It can impel dislocations to spread and multiply, speed up the formation of the second phase, and control the order of exudates. During the liquid phase transition, the pulsed magnetic field can provide nucleation energy, break up coarse dendrites, restraint the growth of twisted dendrites, uniform the solute distribution, and eventually enhance the properties of metal. Numerical simulation can reproduce the changes in magnetic field, force, and internal structure in the process of pulsed magnetic field treatment, which provides an important basis for exploring the mechanism of pulsed magnetic field treatment. The strengthening effect of the pulsed magnetic field treatment mainly depends on the magnetic field intensity, pulse duty cycle, and action time of the magnetic field, and one of the key parts of pulsed magnetic field treatment is parameters optimization by numerical simulation. At present, the pulsed magnetic field treatment technology has been applied to cutting tools, coating fabrication, and metal casting. To widen the application of pulsed magnetic field treatment technology, special attention should be paid to strengthening mechanisms, parameter optimization, and device miniaturization in further research of pulsed magnetic field treatment.
脉冲磁场处理 / 金属材料 / 强化机理 / 数值模拟 / 固态相变 / 液态相变
pulsed magnetic field treatment / metal material / strengthening mechanism / numerical simulation / solid phase transformation / liquid phase transformation
TG142.1 / TB31
[1] |
潘栋. 电-热-力复合场对42CrMo/T250钢微观组织及力学性能的影响[D].长春:吉林大学,2020.
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
李磊,朱庆丰,左玉波,等.磁场下半连续铸造锭坯微观组织和晶体学特征研究[J].材料工程,2013(12):13-18.
|
[7] |
王龙,胡德安,邹鹏远,等.交流磁场辅助铜-钢TIG填丝焊接头组织和力学性能[J].材料工程,2021,49(8):104-110.
|
[8] |
|
[9] |
|
[10] |
|
[11] |
王宏明, 李沛思, 郑瑞, 等. 强脉冲磁场冲击处理对铝基复合材料塑性的影响机制[J]. 物理学报, 2015, 64(8): 295-302.
|
[12] |
师亚洲, 逯广平, 高翌, 等. 脉冲磁场处理对7075铝合金性能及组织的影响[J]. 金属热处理, 2021, 46(9): 159-164.
|
[13] |
董丽丽, 麻永林, 宿鹏吉, 等. 脉冲磁场热处理对CGO取向硅钢脱碳退火过程中组织和织构的影响[J]. 金属热处理, 2022, 47(2): 31-34.
|
[14] |
刘立华. 脉冲磁场对取向硅钢初次再结晶组织织构的影响[D]. 上海:上海大学, 2013.
|
[15] |
|
[16] |
栾晓圣, 梁志强, 赵文祥, 等. 45CrNiMoVA钢脉冲磁处理的强化机理[J]. 金属学报, 2021, 57(10): 1272-1280.
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
许擎栋, 李克俭, 蔡志鹏, 等. 脉冲磁场对TC4钛合金微观结构的影响及其机理探究[J]. 金属学报, 2019, 55(4): 489-495.
|
[23] |
|
[24] |
|
[25] |
吴光辉, 侯廷平, 李自华, 等. 强磁场对钢中马氏体相变的影响及其研究展望[J]. 金属热处理, 2020, 45(5): 236-242.
|
[26] |
张秋红. 磁场作用下温度诱发马氏体相变行为研究[D].沈阳:东北大学, 2020.
|
[27] |
冯路路. 合金元素及强磁场对高碳钢珠光体相变及微观结构的影响[D]. 武汉:武汉科技大学, 2021.
|
[28] |
胡心彬, 杨贤镛, 钟毅, 等. 脉冲磁场对Co-25Ni合金马氏体相变温度的影响[J].湖北工学院学报, 2002(1): 23-24.
|
[29] |
|
[30] |
|
[31] |
孙中豪, 邢淑清, 程桥, 等. 脉冲磁场对TC4钛合金析出行为及力学性能的影响[J]. 稀有金属材料与工程, 2022, 51(9): 3336-3344.
|
[32] |
|
[33] |
|
[34] |
|
[35] |
李自华. 强磁场下钢中碳化物析出的热力学机制研究[D]. 武汉:武汉科技大学, 2020.
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
徐燕祎, 翟启杰. 脉冲电磁场在金属熔体中的电磁效应及其应用[J]. 上海大学学报(自然科学版), 2020, 26(1): 1-20.
|
[44] |
龚永勇, 程书敏, 钟玉义, 等. 脉冲磁致振荡凝固技术[J]. 金属学报, 2018, 54(5): 757-765.
|
[45] |
李莉娟, 王郢, 翟启杰. 脉冲磁致振荡(PMO)凝固均质化技术在特殊钢中的应用[J]. 钢铁研究学报, 2021, 33(10): 1018-1030.
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
王岩. 脉冲磁场处理对20Cr2Ni4A钢组织结构和力学性能的影响机理研究[D]. 北京:中国地质大学, 2021.
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
[68] |
|
[69] |
|
[70] |
|
[71] |
|
[72] |
|
[73] |
|
[74] |
滕跃飞, 李应举, 冯小辉, 等. 脉冲磁场作用下矩形截面宽厚比对K4169高温合金晶粒细化的影响[J]. 金属学报, 2015, 51(7): 844-852.
|
[75] |
|
[76] |
|
[77] |
|
[78] |
|
[79] |
马利平, 梁志强, 王西彬, 等. 脉冲磁化处理对M42高速钢刀具组织和力学性能的影响[J]. 金属学报, 2015, 51(3): 307-314.
|
[80] |
魏灿, 杨刚, 刘剑, 等. 脉冲电磁场处理工艺对YG6硬质合金铣削性能的强化作用[J]. 热加工工艺, 2019, 48(22): 27-30.
|
[81] |
廖承志, 杨屹, 杨刚, 等. 脉冲磁场对YG6硬质合金力学性能及耐磨性的影响[J]. 热加工工艺, 2020, 49(12): 57-61.
|
[82] |
|
[83] |
|
[84] |
|
[85] |
|
[86] |
|
[87] |
|
[88] |
|
[89] |
|
[90] |
|
[91] |
|
/
〈 |
|
〉 |