脉冲磁场强化金属材料微观组织演变规律研究进展

王慧鹏, 江聪, 黄艳斐, 郭伟玲, 董丽虹, 邢志国, 王海斗

PDF(1950 KB)
PDF(1950 KB)
材料工程 ›› 2025, Vol. 53 ›› Issue (3) : 20-34. DOI: 10.11868/j.issn.1001-4381.2023.000662
综述

脉冲磁场强化金属材料微观组织演变规律研究进展

作者信息 +

Research progress in microstructure evolution of metal materials strengthened by pulsed magnetic field treatment

Author information +
History +

摘要

脉冲磁场强化技术具有非直接接触、低能耗、绿色环保等优点,在金属材料性能提升方面具有重要的应用前景。本文总结脉冲磁场强化技术在金属材料强化机理、数值模拟和实际应用等方面的研究现状,提出脉冲磁场强化技术亟须突破的瓶颈。脉冲磁场作为一种高场强、周期性磁场,对金属材料的固态相变和液态相变过程均具有明显的强化作用:在固态相变中,脉冲磁场能够改变金属材料的织构和磁畴,促使位错增殖扩散,加快第二相析出,调控析出物析出次序;在液态相变中,脉冲磁场为形核提供能量,破碎粗大枝晶,抑制树状枝晶生长,促进溶质均匀分布,多种作用耦合下提高金属材料性能。数值模拟方法能够再现脉冲磁场强化过程中磁场分布、材料受力和内部结构等方面变化,为研究脉冲磁场强化机理提供重要依据;脉冲磁场强化效果主要取决于磁场的磁场强度、脉冲占空比和作用时间,通过数值模拟技术获得强化效果最优的脉冲磁场参数是脉冲磁场强化金属材料的研究重点之一。目前,脉冲磁场强化技术已应用于金属刀具、涂层制备和金属铸造等领域。为了实现脉冲磁场强化技术的广泛应用,未来还需要在强化机理、脉冲磁场参数设计、脉冲磁场装置小型化等方面开展进一步的研究工作。

Abstract

The pulsed magnetic field treatment technology has the advantages of indirect contact, low energy consumption, green environmental protection, etc., and has important application prospects in the metal material strengthening. This study summarizes the research status of pulsed magnetic field treatment technology in the strengthening mechanism, numerical simulation, and practical application of metal materials, and puts forward the bottleneck of pulsed magnetic field treatment technology that needs to be broken through. As a kind of high-field strength and periodic magnetic field, the pulsed magnetic field has an obvious strengthening effect on the solid phase transformation and liquid phase transformation of metal materials. The pulsed magnetic field can change the texture and magnetic domain of metal for the solid phase transformation. It can impel dislocations to spread and multiply, speed up the formation of the second phase, and control the order of exudates. During the liquid phase transition, the pulsed magnetic field can provide nucleation energy, break up coarse dendrites, restraint the growth of twisted dendrites, uniform the solute distribution, and eventually enhance the properties of metal. Numerical simulation can reproduce the changes in magnetic field, force, and internal structure in the process of pulsed magnetic field treatment, which provides an important basis for exploring the mechanism of pulsed magnetic field treatment. The strengthening effect of the pulsed magnetic field treatment mainly depends on the magnetic field intensity, pulse duty cycle, and action time of the magnetic field, and one of the key parts of pulsed magnetic field treatment is parameters optimization by numerical simulation. At present, the pulsed magnetic field treatment technology has been applied to cutting tools, coating fabrication, and metal casting. To widen the application of pulsed magnetic field treatment technology, special attention should be paid to strengthening mechanisms, parameter optimization, and device miniaturization in further research of pulsed magnetic field treatment.

关键词

脉冲磁场处理 / 金属材料 / 强化机理 / 数值模拟 / 固态相变 / 液态相变

Key words

pulsed magnetic field treatment / metal material / strengthening mechanism / numerical simulation / solid phase transformation / liquid phase transformation

中图分类号

TG142.1 / TB31

引用本文

导出引用
王慧鹏 , 江聪 , 黄艳斐 , . 脉冲磁场强化金属材料微观组织演变规律研究进展. 材料工程. 2025, 53(3): 20-34 https://doi.org/10.11868/j.issn.1001-4381.2023.000662
Huipeng WANG, Cong JIANG, Yanfei HUANG, et al. Research progress in microstructure evolution of metal materials strengthened by pulsed magnetic field treatment[J]. Journal of Materials Engineering. 2025, 53(3): 20-34 https://doi.org/10.11868/j.issn.1001-4381.2023.000662

参考文献

[1]
潘栋. 电-热-力复合场对42CrMo/T250钢微观组织及力学性能的影响[D].长春:吉林大学,2020.
PAN D.Effects of coupled electric-thermal-strain fields on microstructure and mechanical properties of 42CrMo/T250 steels [D]. Changchun :Jilin University, 2020.
[2]
KAPITZA P. A method of producing strong magnetic fields [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences1924105(734): 691-710.
[3]
FURTH H P. High magnetic field research [J]. Science1960132(3424):387-393.
[4]
EDRY I SHOIHET A HAYUN S. On the effects of electric current intensity and pulse frequency on the solidified structure of pure aluminum subjected to pulse magneto-oscillation treatment [J]. Journal of Materials Processing Technology2021288: 116844.
[5]
QIAN C LI K RUI S S, et al. Magnetic induced re-dissolution and microstructure modifications on mechanical properties of Cr4Mo4V steel subjected to pulsed magnetic treatment [J]. Journal of Alloys and Compounds2021881: 160471.
[6]
李磊,朱庆丰,左玉波,等.磁场下半连续铸造锭坯微观组织和晶体学特征研究[J].材料工程2013(12):13-18.
LI L ZHU Q F ZUO Y B, et al. Research on microstructure and crystallographic characteristics of semi-continuous casting billets under magnetic field [J]. Journal of Materials Engineering2013(12): 13-18.
[7]
王龙,胡德安,邹鹏远,等.交流磁场辅助铜-钢TIG填丝焊接头组织和力学性能[J].材料工程202149(8):104-110.
WANG L HU D A ZOU P Y, et al. Microstructure and mechanical properties of copper-steel TIG fillet welds assisted by alternating magnetic field [J]. Journal of Materials Engineering202149(8): 104-110.
[8]
FEI H WU H YANG X, et al. Pulsed magnetic field treatment of cBN tools for improved cutting performances [J]. Journal of Manufacturing Processes202169: 21-32.
[9]
WANG Z HUANG Y GUO W, et al. Effect of high intensity pulsed magnetic field (30 T) on microstructure and tribological properties of Ni-based coatings[J]. Materials Letters2023347: 134639.
[10]
SONG J HE D GUO W, et al. Effect of magnetic field type on the flight state of supersonic plasma spray particles and coating properties [J].Journal of Thermal Spray Technology2023(6):32.
[11]
王宏明, 李沛思, 郑瑞, 等. 强脉冲磁场冲击处理对铝基复合材料塑性的影响机制[J]. 物理学报201564(8): 295-302.
WANG H M LI P S ZHENG R, et al. Mechanism of high pulsed magnetic field treatment of the plasticity of aluminum matrix composites[J]. Acta Physica Sinica201564(8): 295-302.
[12]
师亚洲, 逯广平, 高翌, 等. 脉冲磁场处理对7075铝合金性能及组织的影响[J]. 金属热处理202146(9): 159-164.
SHI Y Z LU G P GAO Y,et al. Effect of pulsed magnetic field treatment on properties and microstructure of 7075 aluminum alloy[J]. Heat Treatment of Metals202146(9): 159-164.
[13]
董丽丽, 麻永林, 宿鹏吉, 等. 脉冲磁场热处理对CGO取向硅钢脱碳退火过程中组织和织构的影响[J]. 金属热处理202247(2): 31-34.
DONG L L MA Y L SU P J, et al. Effect of pulsed magnetic field heat treatment on microstructure and texture of CGO oriented silicon steel during decarburization annealing[J]. Heat Treatment of Metals202247(2): 31-34.
[14]
刘立华. 脉冲磁场对取向硅钢初次再结晶组织织构的影响[D]. 上海:上海大学, 2013.
LIU L H. Effect of pulsed magnetic field on microstructure and texture of grain-oriented silicon steel during primary recrystallization process[D]. Shanghai:Shanghai University, 2013.
[15]
BAI Q WANG J XING S, et al. Crystal orientation and crystal structure of paramagnetic α-Al under a pulsed electromagnetic field[J]. Scientific Reports202010(1): 1-13.
[16]
栾晓圣, 梁志强, 赵文祥, 等. 45CrNiMoVA钢脉冲磁处理的强化机理[J]. 金属学报202157(10): 1272-1280.
LUAN X S LIANG Z Q ZHAO W X, et al. 45CrNiMoVA steel,pulsed magnetic field,magnetic domain motion,strengthening mechanism [J]. Acta Metallurgica Sinica202157(10): 1272-1280.
[17]
WANG Y XING Z HUANG Y, et al. Effect of pulse magnetic field treatment on the hardness of 20Cr2Ni4A steel[J]. Journal of Magnetism and Magnetic Materials2021538: 168248.
[18]
SHAO Q WANG G WANG H, et al. Improvement in uniformity of alloy steel by pulsed magnetic field treatment[J]. Materials Science and Engineering: A2021799: 140143.
[19]
XU S XIONG L CHEN Y, et al. An analysis of key characteristics of the Frank-Read source process in FCC metals[J]. Journal of the Mechanics and Physics of Solids201696: 460-476.
[20]
LI Z LI K QIAN C, et al. Effect of pulsed magnetic field on retained austenite of quenched 8Cr4Mo4V steel under cryogenic condition[J]. Journal of Materials Research and Technology202323: 5004-5015.
[21]
CHENG J LI G WANG H, et al. Influence of high pulsed magnetic field on the dislocations and mechanical properties of Al2O3/Al composites[J]. Journal of Materials Engineering and Performance201827(3): 1083-1092.
[22]
许擎栋, 李克俭, 蔡志鹏, 等. 脉冲磁场对TC4钛合金微观结构的影响及其机理探究[J]. 金属学报201955(4): 489-495.
XU Q D LI K J CAI Z P, et al. Effect of pulsed magnetic field in the microstructure of TC4 titanium alloy and its mechanism[J]. Acta Metallurgica Sinica201955(4): 489-495.
[23]
HU Y ZHAO H LI J, et al. Effect of pulsed magnetic field on the microstructure of QAl9-4 [J]. Materials, Multidisciplinary Digital Publishing Institute, 202215(23): 8336.
[24]
HU Y ZHAO H YU X, et al. Research progress of magnetic field regulated mechanical property of solid metal materials[J]. Metals, Multidisciplinary Digital Publishing Institute, 202212(11): 1988.
[25]
吴光辉, 侯廷平, 李自华, 等. 强磁场对钢中马氏体相变的影响及其研究展望[J]. 金属热处理202045(5): 236-242.
WU G H HUO T P LI Z H, et al. Research prospects and effect of high magnetic field on martensite transformation of steel[J]. Heat Treatment of Metals202045(5): 236-42.
[26]
张秋红. 磁场作用下温度诱发马氏体相变行为研究[D].沈阳:东北大学, 2020.
ZHANG Q H. Temperature induced martensitic transformation behavior under magnetic field[D]. Shenyang: Northeastern University, 2020.
[27]
冯路路. 合金元素及强磁场对高碳钢珠光体相变及微观结构的影响[D]. 武汉:武汉科技大学, 2021.
FENG L L. Effect of allooying elements and high magnetic field on pearlite transformation and micro-structure of high carbon steel[J]. Wuhan:Wuhan University of Science and Technology, 2021.
[28]
胡心彬, 杨贤镛, 钟毅, 等. 脉冲磁场对Co-25Ni合金马氏体相变温度的影响[J].湖北工学院学报2002(1): 23-24.
HU X B YANG X Y ZHONG Y, et al. Effect of the magnetic pulse on the temperature of martensitic transformation of Co-25Ni alloys[J]. Journal of Hubei University of Technology2002(1): 23-24.
[29]
LUDTKA G M JARAMILLO R A KISNER R A, et al. In situ evidence of enhanced transformation kinetics in a medium carbon steel due to a high magnetic field[J]. Scripta Materialia200451(2): 171-174.
[30]
HAO X J OHTSUKA H. Effect of high magnetic field on phase transformation temperature in Fe-C alloys[J]. Materials Transactions200445(8): 2622-2625.
[31]
孙中豪, 邢淑清, 程桥, 等. 脉冲磁场对TC4钛合金析出行为及力学性能的影响[J]. 稀有金属材料与工程202251(9): 3336-3344.
SUN Z H XING S Q CHENG Q, et al. Effect of pulsed magnetic field on precipitation behavior and mechanical properties of TC4 titanium alloy[J]. Rare Metal Materials and Engineering202251(9): 3336-3344.
[32]
WU G H HOU T P WU K M, et al. Influence of high magnetic field on carbides and the dislocation density during tempering of high chromium-containing steel[J]. Journal of Magnetism and Magnetic Materials2019479: 43-49.
[33]
HOU T P WU K M. Alloy carbide precipitation in tempered 2.25 Cr-Mo steel under high magnetic field[J]. Acta Materialia201361(6): 2016-2024.
[34]
ZHANG D HOU T LIANG X, et al. Insights into the assessment of the magnetic-field-induced precipitation behavior of alloy carbides M 7C3 in steels[J]. Materials & Design2022221: 111023.
[35]
李自华. 强磁场下钢中碳化物析出的热力学机制研究[D]. 武汉:武汉科技大学, 2020.
LI Z H. Thermodynamic analysis for the magnetic-field-induced precipitation behaviors in steels[D]. Wuhan: Wuhan University of Science and Technology, 2020.
[36]
SONG Y L YU C MIAO X, et al. Tribological performance improvement of bearing steel GCr15 by an alternating magnetic treatment[J]. Acta Metallurgica Sinica (English Letters)201730(10): 957-964.
[37]
YIN Z X GONG Y Y LI B, et al. Refining of pure aluminum cast structure by surface pulsed magneto-oscillation[J]. Journal of Materials Processing Technology2012212(12): 2629-2634.
[38]
MA X YANG Y WANG B. Effect of pulsed magnetic field on superalloy melt[J]. International Journal of Heat and Mass Transfer200952(23): 5285-5292.
[39]
ZHAO Z LIU Y LIU L. Grain refinement induced by a pulsed magnetic field and synchronous solidification[J]. Materials and Manufacturing Processes201126(9): 1202-1206.
[40]
BAI Q MA Y XING S, et al. Nucleation and grain refinement of 7A04 aluminum alloy under a low-power electromagnetic pulse[J]. Journal of Materials Engineering and Performance201827(2): 857-863.
[41]
LI Y J TAO W Z YANG Y S. Grain refinement of Al-Cu alloy in low voltage pulsed magnetic field[J]. Journal of Materials Processing Technology2012212(4): 903-909.
[42]
ZHANG K LI Y YANG Y. Influence of the low voltage pulsed magnetic field on the columnar-to-equiaxed transition during directional solidification of superalloy K4169[J]. Journal of Materials Science & Technology202048: 9-17.
[43]
徐燕祎, 翟启杰. 脉冲电磁场在金属熔体中的电磁效应及其应用[J]. 上海大学学报(自然科学版)202026(1): 1-20.
XU Y Y ZHAI Q J. Electromagnetic effect of pulsed electromagnetic field in moloten metals and its application[J]. Journal of Shanghai University(Natural Science Edition)202026(1): 1-20.
[44]
龚永勇, 程书敏, 钟玉义, 等. 脉冲磁致振荡凝固技术[J]. 金属学报201854(5): 757-765.
GONG Y Y CHENG S M ZHONG Y Y, et al. The solidification technology of pulsed magneto oscillation[J]. Acta Metallurgica Sinica201854(5): 757-765.
[45]
李莉娟, 王郢, 翟启杰. 脉冲磁致振荡(PMO)凝固均质化技术在特殊钢中的应用[J]. 钢铁研究学报202133(10): 1018-1030.
LI L J WANG Y ZHAI Q J. Application of solidification homogenizing technology of pulse magneto oscillation (PMO) in special steels[J]. Journal of Iron and Steel Research202133(10): 1018-1030.
[46]
GONG Y CHENG S ZHONG Y, et al. Influence of electromagnetic parameters on solidification structure of pure Al in the case of identical power[J]. Journal of Iron and Steel Research International201825(8): 854-861.
[47]
LI L LIANG W YANG L, et al. Structure refinement and homogenization of Zn-Cu alloys induced by a high-voltage pulsed magnetic field during the solidification process[J]. International Journal of Metalcasting202317(1): 399-413.
[48]
WANG B YANG Y S ZHOU J, et al. Structure refinement of pure Mg under pulsed magnetic field[J]. Materials Science and Technology201127(1): 176-179.
[49]
LI L LIANG W BAN C, et al. Effects of a high-voltage pulsed magnetic field on the solidification structures of biodegradable Zn-Ag alloys[J]. Materials Characterization2020163: 110274.
[50]
MANUWONG T ZHANG W KAZINCZI P L, et al. Solidification of Al alloys under electromagnetic pulses and characterization of the 3D microstructures using synchrotron X-ray tomography[J]. Metallurgical and Materials Transactions A201546(7): 2908-2915.
[51]
CUI Z YAN C LI Y, et al. Control of the non-metallic inclusions near solidification front by pulsed magnetic field[J]. Metals, Multidisciplinary Digital Publishing Institute, 202212(12): 2008.
[52]
GONG M LIU K HU W, et al. Microstructure of Al-Mg-Si-La alloy under pulsed magnetic field treatment during solidification[J]. Materials Science and Technology, Taylor & Francis, 202339(12): 1452-1462.
[53]
LI Y TENG Y FENG X, et al. Effects of pulsed magnetic field on microsegregation of solute elements in a Ni-based single crystal superalloy[J]. Journal of Materials Science & Technology201733(1): 105-110.
[54]
XU Y Y ZHAO J YE C Y, et al. Distributions of electromagnetic fields and forced flow and their relevance to the grain refinement in Al-Si alloy under the application of pulsed magneto-oscillation[J]. Acta Metallurgica Sinica (English Letters)202235(2): 254-274.
[55]
WANG H JIA Y LE Q, et al. Transient numerical simulation of solidification characteristic under differential phase pulsed magnetic field[J]. Computational Materials Science2020172: 109261.
[56]
LI S CUI X LI G. Multi-physics analysis of electromagnetic forming process using an edge-based smoothed finite element method[J]. International Journal of Mechanical Sciences2017134: 244-252.
[57]
HATIČ V MAVRIČ B ŠARLER B. Simulation of macrosegregation in direct-chill casting—a model based on meshless diffuse approximate method[J]. Engineering Analysis with Boundary Elements2020113: 191-203.
[58]
SODA R TAKAGI K OZAKI K. Numerical simulation of magnetic-aligned compaction with pulsed high magnetic field[J]. Scripta Materialia2016120: 41-44.
[59]
YAN S LEI Y HUANG S, et al. Dynamic analysis of electromagnetic compaction of Ag-Cu-Sn multivariate mixed metal powders for brazing[J]. International Journal of Applied Electromagnetics and Mechanics201960(3): 457-476.
[60]
王岩. 脉冲磁场处理对20Cr2Ni4A钢组织结构和力学性能的影响机理研究[D]. 北京:中国地质大学, 2021.
WANG Y. Effect and mechanism of pulsed magnetic field treatment on the microstructure and mechanical properties of 20Cr2Ni4steel[D]. Beijing : China University of Geosciences, 2021.
[61]
SOFI K HAMZAOUI M IDRISSI H EL, et al. Electromagnetic pulse generator: an analytical and numerical study of the Lorentz force in tube crimping processes[J]. CIRP Journal of Manufacturing Science and Technology202031: 108-118.
[62]
LI F LI H GE X, et al. Numerical simulation of magnetic pulse radial compaction of W-Cu20 powder with a field shaper[J]. The International Journal of Advanced Manufacturing Technology2021114(1): 219-230.
[63]
QIU L LI Y ABU-SIADA A, et al. Research on electromagnetic force distribution and deformation uniformity of tube electromagnetic bulging based on concave magnetic field shaper[J]. IEEE Access20219: 63550-63558.
[64]
LIU D LI B GUO Z, et al. Finite element analysis on electromagnetic forming of DP780 high-strength steel sheets[J]. The International Journal of Advanced Manufacturing Technology2021112(5): 1617-1629.
[65]
YAN Z XIAO A CUI X, et al. Fracture behavior of 7075-T6 aluminum alloy under electromagnetic forming and traditional stamping[J]. Archives of Civil and Mechanical Engineering202121(3): 134.
[66]
SODA R TANAKA K TAKAGI K, et al. Simulation-aided development of magnetic-aligned compaction process with pulsed magnetic field[J]. Powder Technology2018329: 364-370.
[67]
DUAN W BAO J LIU W, et al. Simulation on DC casting of magnesium alloy under out-of-phase pulsed magnetic field with different coil connection strategies[J]. International Journal of Heat and Mass Transfer2020162: 120353.
[68]
SHABUROVA N KRYMSKY V MOGHADDAM A O. Theory and practice of using pulsed electromagnetic processing of metal melts[J]. Materials202215(3): 1235.
[69]
HATIĆ V MAVRIČ B KOŠNIK N, et al. Simulation of direct chill casting under the influence of a low-frequency electromagnetic field[J]. Applied Mathematical Modelling201854: 170-188.
[70]
CHEN G J ZHANG Y J YANG Y S. Modelling the unsteady melt flow under a pulsed magnetic field[J]. Chinese Physics B201322(12): 124703.
[71]
CHEN Q SHEN H. Numerical study on solidification characteristics under pulsed magnetic field[J]. International Journal of Heat and Mass Transfer2018120: 997-1008.
[72]
JIA Y CHEN X LE Q, et al. Macro-physical field of large diameter magnesium alloy billet electromagnetic direct-chill casting: a comparative study[J]. Journal of Magnesium and Alloys20208(3): 716-730.
[73]
JIA Y WANG H LE Q. Transient coupling simulation of multi-physical field during pulse electromagnetic direct-chill casting of AZ80 magnesium alloy[J]. International Journal of Heat and Mass Transfer2019143: 118524.
[74]
滕跃飞, 李应举, 冯小辉, 等. 脉冲磁场作用下矩形截面宽厚比对K4169高温合金晶粒细化的影响[J]. 金属学报201551(7): 844-852.
TENG Y F LI Y J FENG X H, et al. Effect of rectangle aspect on grain refinement of superalloy K4169 under pulsed magnetic field[J]. Acta Metallurgica Sinica201551(7): 844-852.
[75]
ZHANG K L LI Y YANG Y. Simulation of the influence of pulsed magnetic field on the superalloy melt with the solid-liquid interface in directional solidification[J]. Acta Metallurgica Sinica-(English Letters)202033(10): 1442-1454.
[76]
DUAN W SU W BAO J, et al. Numerical study on transient melt oscillation and solidification characteristic during magnesium alloy direct chill casting under out-of-phase pulsed magnetic field[J]. Materials Today Communications202231: 103441.
[77]
DUAN W YANG Y LIU W, et al. Modelling the fluid flow, solidification and segregation behavior in electromagnetic DC casting of magnesium alloy[J]. Simulation Modelling Practice and Theory2022115: 102460.
[78]
QU H ZHANG L CHEN Z, et al. Pulsed magnetic field treatment of TiAlSiN-coated milling tools for improved cutting performances[J]. The International Journal of Advanced Manufacturing Technology2022120(9): 6723-6734.
[79]
马利平, 梁志强, 王西彬, 等. 脉冲磁化处理对M42高速钢刀具组织和力学性能的影响[J]. 金属学报201551(3): 307-314.
MA L P LIANG Z Q WANG X B, et al. Influence of pulsed magnetic treatment on microstructures and mechanical properties of M42 high speed steel tool [J]. Acta Metallurgica Sinica201551(3): 307-314.
[80]
魏灿, 杨刚, 刘剑, 等. 脉冲电磁场处理工艺对YG6硬质合金铣削性能的强化作用[J]. 热加工工艺201948(22): 27-30.
WEI C YANG G LIU J, et al. Strengthening effect of pulse electromagnetic field treatment process in milling machinability of YG6 cemented carbide[J]. Hot Working Technology201948(22): 27-30.
[81]
廖承志, 杨屹, 杨刚, 等. 脉冲磁场对YG6硬质合金力学性能及耐磨性的影响[J]. 热加工工艺202049(12): 57-61.
LIAO C Z YANG Y YANG G, et al. Effects of pulsed magnetic field on mechanical properties and wear resistance of YG6 cenebted carbides [J]. Hot Working Technology202049(12): 57-61.
[82]
ZHONG F WANG J ZHANG Q, et al. Residual stress reductions of carbide cutting tools through applying pulsed magnetic field and coupled electromagnetic field mechanism analysis and comparison study[J]. The International Journal of Advanced Manufacturing Technology2022121(7): 4757-4775.
[83]
YANG Y YANG Y LI Q, et al. An eco-friendly pulsed magnetic field treatment on cemented carbide (WC-12Co) for enhanced milling performance[J]. Journal of Cleaner Production2022340: 130748.
[84]
WANG Z HUANG Y ZHANG L, et al. Effects of pulsed magnetic field on the flight and impact of supersonic plasma spraying particles and the properties of coatings[J]. Materials & Design2022223: 111127.
[85]
QIAN C LIU Q XIONG X, et al. Mechanism for magnetic field induced structural relaxation and accompanying fracture toughness improvement of the thermal spraying coating[J]. Materials & Design2022223: 111113.
[86]
WANG Z HUANG Y ZHANG L, et al. Effect of a pulsed magnetic field on the tribological properties of amorphous/nanocrystalline composite coatings by supersonic plasma spraying [J]. Applied Surface Science2022606: 154853.
[87]
WANG Z HUANG Y ZHOU J, et al. Effect of Fe content on the tribological properties of Ni60 coatings applied by pulsed magnetic field assisted supersonic plasma spraying [J]. Materials Characterization2022185: 111771.
[88]
ZHOU J GUO W HE D, et al. Study on preparation and wear resistance of NiCrBSi-WC/Co composite coatings by pulsed magnetic field assisted supersonic plasma spraying [J]. Surface and Coatings Technology2022448: 128897.
[89]
SUN J SHENG C WANG D, et al. Influence of pulsed magneto-oscillation on microstructure and mechanical property of rectangular 65Mn steel ingot [J]. Journal of Iron and Steel Research International201825(8): 862-866.
[90]
LI H LIU Z LI R, et al. Distribution of nonmetallic inclusions in molten steel under hot-top pulsed magneto-oscillation treatment[J]. Journal of Iron and Steel Research International201825(8): 867-876.
[91]
ZHANG J, JIE J, LU Y, et al. Fabrication of carbon fibers reinforced Al-matrix composites in pulsed magnetic field [J]. Journal of Materials Research and Technology202111: 197-210.

基金

国家自然科学基金项目(52275227)
装备预研教育部联合基金青年项目(809B032101)

评论

PDF(1950 KB)

Accesses

Citation

Detail

段落导航
相关文章

/