泡沫镍/树脂多孔复合材料的压缩强度和比强度

刘培生, 程瑜扬, 程伟, 陈斌, 李翔宇

PDF(1955 KB)
PDF(1955 KB)
材料工程 ›› 2025, Vol. 53 ›› Issue (3) : 153-158. DOI: 10.11868/j.issn.1001-4381.2023.000545
研究论文

泡沫镍/树脂多孔复合材料的压缩强度和比强度

作者信息 +

Compressive strength and specific strength of porous nickel foam/resin composite material

Author information +
History +

摘要

对泡沫镍(平均孔径约为2.7 mm,孔隙率为93.1%)孔棱进行环氧树脂覆层复合,获得孔棱呈复层结构的泡沫镍/树脂多孔复合材料。对所得复合样品进行压缩性能实验,重点分析复合体的机械强度。结果表明:复合样品的压缩强度和比强度均显著高于原泡沫镍。当泡沫镍(体密度ρ r约0.6 g·cm-3)施加覆层制成泡沫镍/树脂复合样品(体密度约0.72~0.82 g·cm-3)后,其压缩强度从0.75 MPa提高到2.24~2.68 MPa,其对应比强度从1.23 MPa·cm3·g-1提高到3.09~3.27 MPa·cm3·g-1。复合样品的压缩强度与孔隙率符合基于八面体模型理论得出的对应数理关系。根据对应力学模型可知,复合样品整体失效由孔棱芯部优先破坏造成。

Abstract

The nickel foam (the average pore diameter is about 2.7 mm,and the porosity is 93.1%) is used for the epoxy resin to coat the pore-struts, and the porous nickel foam/epoxy resin composite is obtained with such pore-struts as a multi-layer structure. The compression performance experiments are conducted on the obtained composite samples, and the mechanical strength is emphatically analyzed. The results show that the compressive strength and the specific strength of the composite samples are both significantly higher than those of the original nickel foam, respectively. When the nickel foam (with a bulk density of about 0.6 g·cm-3) is coated to make nickel foam/resin composite samples (with a bulk density of about 0.72-0.82 g·cm-3), the compressive strength increases from 0.75 MPa to 2.24-2.68 MPa, and the specific strength increases from 1.23 MPa·cm3·g-1 to 3.09-3.27 MPa·cm3·g-1. The relationship between compressive strength and porosity of composite samples conforms to the corresponding mathematical relationship based on the octahedral model theory. According to the relevant mechanical model, the overall failure of the composite samples is caused by the priority failure of the pore-strut core.

关键词

多孔材料 / 泡沫金属 / 多孔复合材料 / 泡沫金属复合材料 / 力学性能 / 压缩强度

Key words

porous material / metal foam / porous composite material / metal foam composite / mechanical property / compressive strength

中图分类号

TB383 / TB33

引用本文

导出引用
刘培生 , 程瑜扬 , 程伟 , . 泡沫镍/树脂多孔复合材料的压缩强度和比强度. 材料工程. 2025, 53(3): 153-158 https://doi.org/10.11868/j.issn.1001-4381.2023.000545
Peisheng LIU, Yuyang CHENG, Wei CHENG, et al. Compressive strength and specific strength of porous nickel foam/resin composite material[J]. Journal of Materials Engineering. 2025, 53(3): 153-158 https://doi.org/10.11868/j.issn.1001-4381.2023.000545

参考文献

[1]
LIU P S CHEN G F. Porous materials[M]. Boston: Elsevier Science, 2014.
[2]
ATWATER M A GUEVARA L N DARLING K A, et al. Solid state porous metal production: a review of the capabilities, characteristics, and challenges[J]. Advanced Engineering Materials201820(7): 1700766.
[3]
GARCÍA-MORENO F. Commercial applications of metal foams:their properties and production[J]. Materials20169: 20-24.
[4]
DEGISCHER H P KRISZT B. Handbook of cellular metals: production, processing,applications[M].Weinheim:Wiley-VCH, 2002.
[5]
刘培生,崔光,程伟.多孔材料性能模型研究1. 数理关系[J]. 材料工程201947(6): 42-62.
LIU P S CUI G CHENG W. Study on the property model for porous materials 1. mathematical relations[J]. Journal of Materials Engineering201947(6): 42-62.
[6]
ASHBY M F EVANS A FLECK N A, et al. Metal foams: a design guide[M]. Boston:Elsevier Science, 2000.
[7]
WEINBERG K MOTA A ORTIZ M. A variational constitutive model for porous metal plasticity[J]. Computational Mechanics200637(2): 142-152.
[8]
NEU T R KAMM P H Von ELTZ N D, et al. Correlation between foam structure and mechanical performance of aluminium foam sandwich panels[J]. Mater Sci Eng:A2021800: 140260.
[9]
GUESSASMA S BASSIR D. Optimization of the mechanical properties of virtual porous solids using a hybrid approach[J]. Acta Materialia201058(2): 716-725.
[10]
杨碧莲,李星吾,阮莹,等. 多孔Cu/Ni复合材料的电沉积法制备及其性能[J]. 稀有金属材料与工程201948(10): 3215-3220.
YANG B L LI X W RUAN Y, et al. Electrodeposition processing of porous Cu/Ni composites and their performance[J]. Rare Metal Materials and Engineering201948(10):3215-3220.
[11]
SANTOS-COQUILLAT A MARTÍNEZ-CAMPOS E MOHEDANO M, et al. In vitro and in vivo evaluation of PEO-modified titanium for bone implant applications[J]. Surface & Coatings Technology2018347: 358-368.
[12]
王彩凤,李洁. 多孔Si/纳米ZnS复合材料发光的研究[J]. 光电子·激光201425(6): 1129-1133.
WANG C F LI J. Study on luminescence of the composite materials of porous Si/nano-ZnS[J]. Journal of Optoelectronics · Laser201425(6): 1129-1133.
[13]
WANG J X DUAN D L YANG X G, et al. Tensile behavior of nickel foam/polyurethane co-continuous composites[J]. Materials Research Express20196: 095103.
[14]
WANG X X ZHOU Y LI J L,et al. Uniaxial compression mechanical properties of foam nickel/iron-epoxy interpenetrating phase composites[J]. Materials202114: 3523.
[15]
YANG X G DUAN D L ZHANG X, et al. Tensile behaviour of poly(ether-ether-ketone) (PEEK)/Ni foam co-continuous phase composites[J]. Journal of Materials Research and Technology202110: 110-120.
[16]
闫鹏飞, 高婷. 精细化学品化学[M]. 北京:化学工业出版社,2014.
YAN P F GAO T. Fine chemicals chemistry[M]. Beijing: Chemical Industry Press, 2014.
[17]
LIU P S SUN J X. A new simple method to conveniently measure the open porosity of porous metal foams with reticular structure[J]. Multidiscipline Modeling in Materials and Structures202218(2): 277-290.
[18]
GIBSON L J ASHBY M F. Cellular solids: structure and properties[M]. Cambridge: Cambridge University Press, 1999.
[19]
刘培生. 压缩载荷作用下多孔复合材料力学关系的数理推演[J]. 北京信息科技大学学报202338(2): 9-15.
LIU P S. Mathematical deduction of the mechanical relation for porous composite materials under compressive loading[J]. Journal of Beijing Information Science & Technology University202338(2): 9-15.
[20]
温秉权,王宾,路学成. 金属材料手册[M]. 2版.北京:电子工业出版社, 2013.
WEN B Q WANG B LU X C. Metallic materials handbook[M]. 2nd ed.Beijing: Publishing House of Electronics Industry, 2013.

评论

PDF(1955 KB)

Accesses

Citation

Detail

段落导航
相关文章

/