锂离子电池寿命衰减机理及改善途径

张冠华, 杨子涵, 丰焱, 熊岳平

PDF(4398 KB)
PDF(4398 KB)
材料工程 ›› 2025, Vol. 53 ›› Issue (7) : 68-82. DOI: 10.11868/j.issn.1001-4381.2023.000407
综述

锂离子电池寿命衰减机理及改善途径

作者信息 +

Life decay mechanism and improvement strategies in Li-ion batteries

Author information +
History +

摘要

在储能需求越来越大的时代背景下,对电池的循环寿命、容量、工作稳定性、倍率等性能提出了更高的要求。锂离子电池因优良的电化学性能和广阔的发展前景而受到青睐,目前已广泛应用于移动设备、电动汽车等领域;然而寿命衰减、成本偏高等瓶颈因素制约了锂离子电池的进一步推广应用。本文综述了锂离子电池循环寿命衰减的主要因素,包括正极材料的损伤与产气,以及负极材料SEI膜修复和锂枝晶的形成导致的活性锂的消耗,总结了近年来科研工作者改善其性能的有效途径,包括负极材料的结构设计与SEI膜稳定性控制,以及正极材料离子掺杂和表面包覆;最后根据锂离子电池发展瓶颈问题,从多元素掺杂、均匀包覆新技术和稳定SEI膜控制3方面给出本领域未来发展趋势展望。

Abstract

With the increasing demand for energy storage, higher requirements have been put forward for the cycle life, capacity, working stability, and rate performances in batteries. Lithium-ion batteries (LIBs) are favoured for their excellent electrochemical performance and broad development prospects and have been widely applied in mobile devices, electric vehicles, and other fields. However, the bottleneck factors such as life decay and high cost have hindered the further promotion and application of LIBs. This article reviews the main factors affecting the cycle life decay of LIBs, including damage and gas production of positive electrode materials, as well as the consumption of active lithium caused by the repair of negative electrode solid electrolyte interface (SEI) membrane and the formation of lithium dendrites. Effective ways for scientific researchers to improve the life properties of LIBs in recent years, including the structural design of negative electrode materials and the control of SEI film stability, as well as ion doping and surface coating of positive electrode materials, are also summarized. Finally, the future development trends in this field from three aspects, such as multi-element doping, uniform coating new technology, and stable SEI film control are proposed based on the bottleneck issues in the development of lithium-ion batteries.

关键词

锂离子电池 / 正极材料 / 负极材料 / 循环寿命 / 固体电解质界面

Key words

Li-ion battery / positive electrode material / negative electrode material / cycle life / SEI

中图分类号

TG621 / TB34

引用本文

导出引用
张冠华 , 杨子涵 , 丰焱 , . 锂离子电池寿命衰减机理及改善途径. 材料工程. 2025, 53(7): 68-82 https://doi.org/10.11868/j.issn.1001-4381.2023.000407
Guanhua ZHANG, Zihan YANG, Yan FENG, et al. Life decay mechanism and improvement strategies in Li-ion batteries[J]. Journal of Materials Engineering. 2025, 53(7): 68-82 https://doi.org/10.11868/j.issn.1001-4381.2023.000407

参考文献

[1]
宋永华, 阳岳希, 胡泽春. 电动汽车电池的现状及发展趋势[J]. 电网技术201135(4): 1-7.
SONG Y H YANG Y X HU Z H. Current situation and development trend of electric vehicle battery [J]. Power Grid Technology201135(4): 1-7.
[2]
孙逢春,何洪文, 陈勇. 镍氢电池充放电特征研究[J]. 汽车技术2001(6): 6-8.
SUN F C HE H W CHEN Y. Study on charging and discharging characteristics of nickel-metal hydride batteries [J]. Automotive Technology2001(6): 6-8.
[3]
张保国. 如何看待铅污染和铅酸蓄电池产业的发展[J]. 电动自行车2011(10):5-8.
ZHANG B G. How to view lead pollution and the development of lead-acid battery industry [J]. Electric Bicycle2011(10):5-8.
[4]
闫金定. 锂离子电池发展现状及前景分析[J]. 航空学报201435(10):2767-2775.
YAN J D. Development status and prospect analysis of lithium-ion batteries [J]. Acta Aeronautica Sinica201435(10):2767-2775.
[5]
李敏, 阮晓莉. 锂电池衰减机制与健康状态评估方法概述[J].东方电气评论202034(4): 18-23.
LI M RUAN X L. Overview of attenuation mechanism and health status evaluation method of lithium battery [J]. Dongfang Electric Review202034(4): 18-23.
[6]
刘璐, 王红蕾, 张志刚. 锂离子电池的工作原理及其主要材料[J]. 科技信息2009(23):454-484.
LIU L WANG H L ZHANG Z G. The working principle and main materials of lithium-ion battery [J]. Science and Technology Information2009(23):454-484.
[7]
王绥军. 基于负极界面副反应的锂离子电池性能实效研究[D]. 天津:天津大学, 2020.
WANG S J.Research on the performance effectiveness of lithium-ion batteries based on side reactions at the negative electrode interface[D].Tianjing:Tianjing University,2020.
[8]
YANG L YANG K ZHENG J, et al. Harnessing the surface structure to enable high-performance cathode materials for lithium-ion batteries[J]. Chemical Society Reviews202049(14): 4667-4680.
[9]
STALLARD J C WHEATCROFT L BOOTH S G, et al. Mechanical properties of cathode materials for lithium-ion batteries[J]. Joule20226(5): 984-1007.
[10]
李丽娟, 朱振东, 代娟. 锂离子电池正极材料Li(Ni x Co y Mn z )O2相变对比[J]. 电化学202127(4): 405-412.
LI L J ZHU Z D DAI J. Phase transition comparison of lithium ion battery cathode material Li(Ni x Co y Mn z )O2 [J]. Journal of Electrochemistry201527(4): 405-412.
[11]
阴启昊, 高波, 尹俊太. 锂离子电池正极材料改性研究进展[J]. 表面技术202251(11): 99-112.
YIN Q H GAO B YIN J T. Research progress of lithium ion battery cathode material modification [J]. Surface Technology202251(11): 99-112.
[12]
ZHANG X L HU G R PENG Z L. Preparation and effects of W-doping on electrochemical properties of spinel Li4Ti5O12 as anode material for lithium ion battery[J]. Battery Bimonthly201320(5): 1151-1155.
[13]
赵新兵, 谢健. 新型锂离子电池正极材料LiFePO4的研究进展[J].机械工程学报200720(1):69-76.
ZHAO X B XIE J. Research progress of LiFePO4, a new cathode material for lithium-ion batteries [J]. Chinese Journal of Mechanical Engineering200720(1):69-76.
[14]
张男杰. 高电压钴酸锂的失效分析与改性研究[D]. 北京:中国科学院物理研究所,2018.
ZHANG N J. Failure analysis and modification research of high-voltage lithium cobalt oxide[D]. Beijin:Institute of Physics, Chinese Academy of Sciences, 2018.
[15]
孙顺. 磷酸铁锂电池循环性能衰减规律及加速寿命试验的研究[D]. 哈尔滨:哈尔滨工业大学,2018.
SUN S. Research on the attenuation law of cycle performance and accelerated life test of lithium iron phosphate batteries[D].Harbin:Harbin Institute of Technology, 2018.
[16]
栗志展, 秦金磊, 梁嘉宁. 高镍三元层状锂离子电池正极材料:研究进展、挑战及改善策略[J]. 储能科学与技术202211(9): 2900-2920.
LI Z Z QIN J L LIANG J N. High nickel ternary layered cathode materials for lithium-ion batteries: research progress, challenges and improvement strategies [J]. Energy Storage Science and Technology202211(9): 2900-2920.
[17]
XU C REEVES P J JACQUET Q, et al. Phase behavior during electrochemical cycling of Ni-rich cathode materials for Li-ion batteries[J]. Advanced Energy Materials202111(7):2003404.
[18]
NORMAN A F JOE C S LAURA W,et al.Mechanical properties of cathode materials for lithium-ion batteries[J].Joule20225:987-1007.
[19]
LIU X H ZHONG L ZHANG L Q,et al. Lithium fiber growth on the anode in a nanowire lithium ion battery during charging[J]. Appl Phys Lett201198:123113.
[20]
张田丽, 王春梅, 宋子会. 锂离子电池石墨负极材料的改性研究进展[J]. 现代技术陶瓷201435(5):5-10.
ZHANG T L WANG C M SONG Z H. Research progress on modification of graphite anode materials for lithium-ion batteries [J]. Modern Technical Ceramics201435(5):5-10.
[21]
任建国, 王科, 何向明. 锂离子电池合金负极材料的研究进展[J]. 化学进展200517(4):597-603.
REN J G WANG K HE X M. Research progress of anode materials for lithium ion batteries [J]. Advances in Chemistry200517(4):597-603.
[22]
TAN J MATZ J DONG P, et al. A growth appreciation for the role of LiF in the solid electrolyte interphase[J]. Advanced Energy Materials202111(16):2100046.
[23]
MEI W JIANG L LIANG C, et al. Understanding of Li-plating on graphite electrode: detection, quantification and mechanism revelation[J]. Energy Storage Materials202141:209-221.
[24]
HOSSAIN M M SHIMA H LEE I. In situ preparation of graphene-ZnO composite for enhanced graphite exfoliation and graphene-nylon-6 composite films[J]. Journal of Applied Polymer Science2017134(27):45034.
[25]
刘勇. 锂离子电池高荷电状态下存储老化机理及延寿研究[D].长沙:国防科技大学,2018.
LIU Y. Research on the storage aging mechanism and lifespan extension of lithium-ion batteries under high charge state[D].Changsha:National University of Defense Technology, 2018.
[26]
FAN X L WANG C S. High-voltage liquid electrolytes for Li batteries: progress and perspectives[J]. Chemical Society Reviews202150(18):10486.
[27]
王澎, 窦悦珊, 赵星. 高镍三元锂离子电池衰减机制研究展望[J].西南大学学报(自然科学版)202244(3):29-43.
WANG P DOU Y S ZHAO X. Research prospect of attenuation mechanism of high-nickel ternary lithium-ion battery [J]. Journal of Southwest University (Natural Science Edition)202244(3):29-43.
[28]
PARK N Y PARK G T KIM S B, et al. Degradation mechanism of Ni-rich cathode materials: focusing on particle interior[J]. ACS Energy Letters20227(7):2362-2369.
[29]
NAMKOONG B PARK N Y PARK G T, et al. High-energy Ni-rich cathode materials for long-range and long-life electric vehicles[J]. Advanced Energy Materials202212(21):2200615.
[30]
LIU H WOLFMAN M KARKI K, et al. Intergranular cracking as a major cause of long-term capacity fading of layered cathodes[J]. Nano Letters201717(6):3452-3457.
[31]
LIU T LIU J LI L. Origin of structural degradation in Li-rich layered oxide cathode[J]. Nature2022606(7913):305-312.
[32]
RINKEL B L D VIVEK J P GARCIA A N. Two electrolyte decomposition pathways at nickel-rich cathode surfaces in lithium-ion batteries[J]. Energy & Environmental Science202215:3416-3438.
[33]
程新兵, 张强. 金属锂枝晶生长机制及抑制方法[J]. 化学进展201830(1):51-72.
CHENG X B ZHANG Q. Mechanism and inhibition methods of dendrite growth of lithium metal [J]. Advances in Chemistry201830(1):51-72.
[34]
黄杰, 凌仕刚, 王雪龙. 锂离子电池基础科学问题(ⅩⅣ)——计算方法[J].储能科学与技术20154(2):215-230.
HUANG J LING S G WANG X L. Lithium ion battery basic scientific problems (Ⅹ Ⅳ) -calculation method [J]. Energy Storage Science and Technology20154(2) : 215-230.
[35]
赵旭, 梁丹莹, 张聪惠. 去合金化制备纳米片阵列和纳米球颗粒多孔锡[J].稀有金属材料与工程202150(10):3670-3676.
ZHAO X LIANG D Y ZHANG C H. Preparation of nanoparticle array and nanoparticle porous tin by dealloying [J]. Rare Metal Materials and Engineering202150(10):3670-3676.
[36]
万文博, 蒲薇华. 锂硫电池最新研究进展[J]. 化学进展201325(11):1830-1841.
WAN W B PU W H. Recent advances in lithium-sulfur batteries [J]. Advances in Chemistry201325(11):1830-1841.
[37]
HONBO H TAKEI K ISHII Y, et al. Electrochemical properties and Li deposition morphologies of surface modified graphite after grinding[J]. Journal of Power Sources2009189(1):337-343.
[38]
HA Y, HARVEY S P TEETER G, et al. Nonpassivated silicon anode surface[J]. Energy Storage Materials202138(1):581-590.
[39]
RICHTER K WALDMANN T PAUL N, et al. Low-temperature charging and aging mechanisms of Si/C composite anodes in Li-ion batteries: an operando neutron scattering study[J]. ChemSusChem202013(3):529-538.
[40]
WU H ZHUO D KONG D, et al. Improving battery safety by early detection of internal shorting with a bifunctional separator[J]. Nature Communications20145(1):5193.
[41]
HEIN S LATZ A. Influence of local lithium metal deposition in 3D microstructures on local and global behavior of Lithium-ion batteries[J]. Electrochimica Acta2016201:354-365.
[42]
WALDMANN T HOGG B I WOHLFAHRT-MEHRENS M. Li plating as unwanted side reaction in commercial Li-ion cells-a review[J]. Journal of Power Sources2018384:107-124.
[43]
KABIR M M DEMIROCAK D E. Degradation mechanisms in Li-ion batteries: a state-of-the-art review[J] Journal of Energy Research201741(14):1963-1972.
[44]
刘虹, 戴海, 耿盼盼. 剥离石墨烯在锂离子电池负极材料中的研究进展[J]. 江西化工202238(1):71-74.
LIU H DAI H GENG P P. Research progress of stripped graphene in lithium ion battery anode materials [J]. Jiangxi Chemical Industry202238(1):71-74.
[45]
ZHU G WANG L LIN H,et al. Walnut-like multicore-shell MnO encapsulated nitrogen-rich carbon nanocapsules as anode material for long-cycling and soft-packed lithium-ion batteries[J]. Advanced Functional Materials201828(18):1800003.
[46]
LU Y NAI J LOU X. Formation of NiCo2V2O8 yolk-double shell spheres with enhanced lithium storage properties[J]. Angewandte Chemie International Edition201857(11):2899-2903.
[47]
SUN J LV C LV F, et al. Tuning the shell number of multishelled metal oxide hollow fibers for optimized lithium-ion storage[J]. ACS Nano201711(6):6186-6193.
[48]
LUO D DENG Y P WANG X, et al. Tuning shell numbers of transition metal oxide hollow microspheres toward durable and superior lithium storage[J]. ACS Nano201711(11):11521-11530.
[49]
SONG J YAN P LUO L, et al. Yolk-shell structured Sb@C anodes for high energy Na-ion batteries[J]. Nano Energy201740(2):504-511.
[50]
CHU Y GUO L XI B, et al. Embedding MnO@Mn3O4 nanoparticles in an N-doped-carbon framework derived from mn-organic clusters for efficient lithium storage[J]. Advanced Materials201830(6):1704244.
[51]
LIU B ZHANG Q JIN Z, et al. Uniform pomegranate-like nanoclusters organized by ultrafine transition metal oxide@nitrogen-doped carbon subunits with enhanced lithium storage properties[J]. Advanced Energy Materials20188(7):1702347.
[52]
YAN C LV C ZHU Y, et al. Engineering 2D nanofluidic Li-ion transport channels for superior electrochemical energy storage[J]. Advanced Materials201729(46):1703909.
[53]
WANG G ZHANG J YANG S, et al. Vertically aligned MoS2 nanosheets patterned on electrochemically exfoliated graphene for high-performance lithium and sodium storage[J]. Advanced Energy Materials20188(8):1702254.
[54]
JIANG Q YANG C C JING W T, et al. Synthesis of open helmet-like carbon skeletons for application in lithium-ion batteries[J]. Journal of Materials Chemistry A20189(6): 3877-3883.
[55]
黄彦瑜. 锂电池发展简史[J]. 物理200736(8):643-651.
HUANG Y Y. A brief history of lithium battery development [J]. Physics200736(8):643-651.
[56]
袁中直, 周震涛, 李伟善. 电解液组成对锂离子电池碳负极SEI膜性能的影响[J]. 电池200236(6):354-357.
YUAN Z Z ZHOU Z T LI W S. Effect of electrolyte composition on properties of SEI film of carbon negative electrode of lithium ion Battery [J]. Chinese Journal of Batteries200236(6):354-357.
[57]
唐子威, 侯旭, 裴波. 锂离子电池电解液研究进展[J]. 船电技术201737(6):14-15.
TANG Z W HOU X PEI B. Research progress of lithium-ion battery electrolyte [J]. Marine Electric Technology201737(6):14-15.
[58]
高鹏飞, 杨军. 锂离子电池硅基复合负极材料的制备及电化学研究[J]. 化学进展201123():264-271.
摘要
增刊1
GAO P F YANG J. Preparation and electrochemical study of silicon based composite anode materials for lithium ion batteries [J]. Advances in Chemistry201123():264-271.
Suppl 1
[59]
PRITZL D SOLCHENBACH S WETJEN M, et al. Morphological changes of silicon nanoparticles and the influence of cutoff potentials in silicon-graphite electrodes[J]. Journal of the Electrochemical Society2017164(12):A2625.
[60]
LIU G CAO Z WANG P, et al. Switching electrolyte interfacial model to engineer solid electrolyte interface for fast charging and wide-temperature lithium-ion batteries[J]. Advanced Science20229:2201893.
[61]
DESHPANDE R D RIDGWAY P FU Y, et al. The limited effect of VC in graphite/NMC cells[J]. Journal of the Electrochemical Society2015162(3):A330.
[62]
MING J CAO Z WU Y, et al. New insight on the role of electrolyte additives in rechargeable lithium ion batteries[J]. ACS Energy Letters20194(11):2613-2622.
[63]
徐前进, 徐金钢, 田朋. 氧化铝包覆锂离子电池正极材料的研究进展[J]. 无机盐工业202255(1):46-55.
XU Q J XU J G TIAN P. Research progress of alumina coated cathode materials for lithium ion batteries [J]. Inorganic Chemicals Industry202255(1):46-55.
[64]
赵群芳, 欧阳全胜, 蒋光辉. 锂离子电池LiFePO4正极材料的掺杂改性研究进展[J].湖南有色金属201935(5):40-43.
ZHAO Q F OUYANG Q S JIANG G H. Research progress on doping modification of LiFePO4 cathode materials for lithium ion batteries [J]. Hunan Nonferrous Metals201935(5):40-43.
[65]
SHIN J H BASAK P KERR J B. Rechargeable Li/LiFePO4 cells using N-methyl-N-butyl pyrrolidinium bis(trifluoromethane sulfonyl)imide-LiTFSI electrolyte incorporating polymer additives[J]. Electrochim Acta200854:410-414.
[66]
王恩通, 刘根庆, 任引哲. 锂离子电池正极材料LiFePO4在Fe位掺杂的研究进展[J]. 化学研究200718(1):93-97.
WANG E T LIU G Q REN Y Z. Research progress of lithium ion battery cathode material LiFePO4 doped in Fe position [J]. Chemical Research200718(1):93-97.
[67]
张培新, 文衍宣, 刘剑洪. 化学沉淀法制备掺杂磷酸铁锂的结构和性能研究[J].稀有金属材料与工程200736(6):954-958.
ZHANG P X WEN Y X LIU J H. Study on structure and properties of doped lithium iron phosphate prepared by chemical precipitation method [J]. Rare Metal Materials and Engineering200736(6):954-958.
[68]
吴彩云, 冯传启, 张朝峰. 层状镍钴锰酸锂三元正极材料的研究进展[J]. 电池202252(1):3-7.
WU C Y FENG C Q ZHANG C F. Research progress of layered lithium nickel-cobalt-manganate ternary cathode materials [J]. Chinese Journal of Batteries20252(1):3-7.
[69]
陈宇方, 李宇杰, 郑春满. 富锂层状氧化物正极材料研究进展[J].无机材料学报201732(8):792-800.
CHEN Y F LI Y J ZHENG C M. Research progress of lithium rich layered oxide cathode materials [J]. Journal of Inorganic Materials201732(8):792-800.
[70]
TAO H E CHEN L SU Y, et al. The effects of alkali metal ions with different ionic radii substituting in Li sites on the electrochemical properties of Ni-rich cathode materials[J]. Journal of Power Sources2019441:227195.
[71]
XIAO B LIU H LIU J, et al. Nanoscale manipulation of spinel lithium nickel manganese oxide surface by multisite Ti occupation as high-performance cathode[J]. Advanced Materials201729(47):1703764.
[72]
BAI X WEI A HE R, et al. The structural and electrochemical performance of Mg-doped LiNi0.85Co0.10Al0.05O2 prepared by a solid state method[J]. Journal of Electroanalytical Chemistry2020858:113771.
[73]
钟盛文, 钟风娣, 张骞. 锂离子正极材料LiNi0.5Mn0.3Co0.2O2的合成与掺杂Al的性能研究[J].有色金属科与工程20134(4):11-16.
ZHONG S W ZHONG F D ZHANG Q. Synthesis of lithium ion cathode material LiNi0.5Mn0.3Co0.2O2 and properties of doped Al [J]. Nonferrous Metals Science and Engineering20134(4):11-16.
[74]
XIE Z ZHANG Y MIN X, et al. One-step bulk and surface co-modification of LiNi0.8Co0.15Al0.05O2 cathode material towards excellent long-term cyclability[J]. Electrochimica Acta2021379:138124.
[75]
LI X XIE Z LIU W, et al. Effects of fluorine doping on structure, surface chemistry, and electrochemical performance of LiNi0.8Co0.15Al0.05O2 [J]. Electrochimica Acta2015174:1122.
[76]
赵红远, 刘兴泉, 张峥. 碳纳米管改性对LiMn2O4倍率及高温电化学性能的影响[J]. 电子元件与材料201332(6):33-37.
ZHAO H Y LIU X Q ZHANG Z. Effect of carbon nanotube modification on the magnification and high temperature electrochemical properties of LiMn2O4 [J]. Electronic Components and Materials201332(6):33-37.
[77]
张建茹. 高镍三元正极材料LiNi0.8Co0.1Mn0.1O2的制备及Mg/Ti掺杂改性研究[D].西宁:青海师范大学,2022.
ZHANG J R. Preparation of high-nickel ternary cathode material LiNi0.8Co0.1Mn0.1O2 and research on Mg/Ti doping modification[D]. Xining:Qinghai Normal University, 2022.
[78]
马璨, 吕迎春, 李泓. 锂离子电池基础科学问题(Ⅶ)——正极材料[J].储能科学与技术20143(1):53-65.
MA C LV Y C LI H. Basic science problems of lithium-ion battery (Ⅶ)-cathode materials [J]. Energy Storage Science and Technology20143(1):53-65.
[79]
XIAO B LIU H LIU J, et al. Nanoscale manipulation of spinel lithium nickel manganese oxide surface by multisite Ti occupation as high-performance cathode[J]. Advanced Materials201729(47):1703764.
[80]
王敏, 吴智远. 掺杂少量Co对Li(Li(1/9)Ni(1/3)Mn(5/9))O2电化学性能的影响[J].电源技术200529(10):19-22.
WANG M WU Z Y. Effect of doping a small amount of Co on electrochemical properties of Li(Li(1/9)Ni(1/3)Mn(5/9) O2 [J]. Power Supply Technology200529(10):19-22.
[81]
VANAPHUTI P BAI J MA L, et al. Unraveling Na and F coupling effects in stabilizing Li, Mn-rich layered oxide cathodes via local ordering modification[J]. Energy Storage Materials202031:459-469.
[82]
AHALIABADEH Z KONG X FEDOROVSKAYA E, et al. Extensive comparison of doping and coating strategies for Ni-rich positive electrode materials[J]. Journal of Power Sources2022540:231633.
[83]
HEISKANEN S K LASZCZYNSKI N LUCHT B L. Generation and evolution of the solid electrolyte interphase of lithium-ion batteries [J]. Journal of the Electrochemical Society2020167(10):100519.
[84]
BROW R DONAKOWSKI A MESNIER A, et al. Mechanical pulverization of Co-free nickel-rich cathodes for improved high-voltage cycling of lithium-ion batteries[J]. ACS Applied Energy Materials20225(6):6996-7005.
[85]
HAN B, KEY B, LIPTON A S, et al. Influence of coating protocols on alumina-coated cathode material: atomic layer deposition versus wet-chemical coating[J]. Journal of the Electrochemical Society2019166(15):A3679-A3684.
[86]
SHIM J H LEE S PARK S S. Effects of MgO Coating on the structural and electrochemical characteristics of LiCoO2 as cathode materials for lithium ion battery[J]. Chemistry of Materials201426(8):2537-2543.
[87]
LIANG L HU G JIANG F, et al. Electrochemical behaviours of SiO2-coated LiNi0.8Co0.1Mn0.1O2 cathode materials by a novel modification method[J]. Journal of Alloys and Compounds2016657:570-581.
[88]
LIU W LI X XIONG D, et al. Significantly improving cycling performance of cathodes in lithium ion batteries: the effect of Al2O3 and LiAlO2 coatings on LiNi0.6Co0.2Mn0.2O2 [J]. Nano Energy201844:111-120.
[89]
LU J ZHAN C WU T, et al. Effectively suppressing dissolution of manganese from spinel lithium manganate via a nanoscale surface-doping approach[J]. Nature Communications20145(1):5693.
[90]
李敏, 李荣华, 王文继. Li3PO4包覆LiMn2O4正极材料的结构表征和电化学性能[J].化学研究200718(4):98-101.
LI M LI R H WANG W J. Structural characterization and electrochemical properties of Li3PO4 coated LiMn2O4 cathode materials [J]. Chemical Research200718(4):98-101.
[91]
XIA S LI F CHEN F, et al. Preparation of FePO4 by liquid-phase method and modification on the surface of LiNi0.80Co0.15Al0.05O2 cathode material[J]. Journal of Alloys and Compounds2018731:428-436.
[92]
刘九鼎, 张宇栋, 刘俊祥. 磷酸锂原位包覆富锂锰基锂离子电池正极材料[J].化学学报202078(12):1426-1433.
LIU J D ZHANG Y D LIU J X. In situ coating of lithium-rich mangan-based lithium ion batteries with lithium phosphate [J]. Acta Chimica Sinica201978(12):1426-1433.
[93]
XU Y D XIANG W WU Z G, et al. Improving cycling performance and rate capability of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode materials by Li4Ti5O12 coating[J]. Electrochimica Acta2018268:358-365.
[94]
DUAN J LIU Y TANG X, et al. Improve electrochemical performance of spinel LiNi0.5Mn1.5O4 via surface modified by Li1.2Ni0.2Mn0.6O2 layered materials[J]. Journal of Materials Science202031:4336-4344.
[95]
YAN H ZHANG G LI Y. Synthesis and characterization of advanced Li3V2(PO43 nanocrystals@conducting polymer PEDOT for high energy lithium-ion batteries[J]. Applied Surface Science2017393:30-36.
[96]
蔺佳明, 赵桃林, 王育华. Li2ZrO3包覆锂离子电池正极材料Li[Li0.2Ni0.2Mn0 .6]O2的制备及其电化学性能[J]. 材料工程, 2020,48(3):112-120.
LIN J M ZHAO T L WANG Y H. Preparation and electrochemical properties of Li-ion battery cathode material Li[Li0.2Ni0.2Mn0.6]O2 coated with Li2ZrO3 [J]. Journal of Materials Engineering201948(3):112-120.
[97]
DENG Y ZHAO S X XU Y, et al. Effect of the morphology of LiLaZrO solid electrolyte coating on the electrochemical performance of spinel LiMn1.95Ni0.05O3.98F0.02 cathode materials[J]. Journal of Materials Chemistry:A20142:18889.

评论

PDF(4398 KB)

Accesses

Citation

Detail

段落导航
相关文章

/