激光快速熔炼TC25G-TiAl4822梯度成分合金凝固组织演变行为

王洋, 冉先喆, 苏磊, 孔德智博, 程序, 李卓, 刘栋

PDF(11738 KB)
PDF(11738 KB)
材料工程 ›› 2025, Vol. 53 ›› Issue (3) : 95-104. DOI: 10.11868/j.issn.1001-4381.2023.000291
研究论文

激光快速熔炼TC25G-TiAl4822梯度成分合金凝固组织演变行为

作者信息 +

Microstructure evolution behavior of gradient composition alloy between TC25G and TiAl4822 prepared by laser rapid melting

Author information +
History +

摘要

未来高推重比先进航空发动机的发展对新型高性能轻质高温压气机整体叶盘需求迫切。激光增材制造TC25G-TiAl4822双金属梯度结构材料作为轻质高压压气机整体叶盘备选的一种重要材料体系,其梯度过渡层合金的成分选择和凝固组织研究对指导相关构件结构性能设计具有关键影响。为理解(1-x) TC25G-xTiAl4822 梯度成分合金随粉末原料中TiAl4822 预合金粉末含量变化而出现的凝固组织演变行为,利用激光快速熔炼技术制备了两种单一原料(TC25G和TiAl4822)成分合金锭和9种混合原料成分合金锭,并采用光镜、扫描电镜、XRD和透射电镜等材料表征设备和硬度测量装置进行研究。研究结果表明:随原料中TiAl4822合金粉末含量的增加,合金凝固晶粒特征变化为树枝晶→等轴晶→树枝晶。合金室温显微组织发生如下的转变:αps+β+α2 →αps2+β/B2→α+α2+β/B2→α2+B2→γ+γ/α2+B2→γ+γ/α2;由于不同成分合金中的相类型和含量变化,合金维氏硬度值呈先增加后减小的变化趋势,且在粉末比例为50%~70%时具有极大突变,硬度由620HV降到450HV。上述相关研究结果为双金属过渡层合金的成分选择需避开中间比例粉末含量范围提供了基础依据。

Abstract

The development of advanced aero-engines with high thrust-to-weight ratios in the future has an urgent need for new high-performance lightweight high-temperature compressor blisks. Laser additive manufacturing TC25G-TiAl4822 gradient structure material is an important material system for the blisk of the lightweight high-temperature compressor. The composition selection and solidification structure research of gradient transition layer alloy have a key influence on guiding the structural performance design of related components. To understand the solidification structure evolution behavior of (1-x)TC25G-xTiAl4822 transition layer alloy with the change of TiAl4822 pre-alloyed powder content in powder raw materials, two kinds of single raw material (TC25G or TiAl4822) alloy ingots and alloy ingots with nine kinds of mixed raw materials are prepared by laser melting technology. Material characterization equipment and hardness measurement devices such as optical microscope, scanning electron microscope, XRD, and TEM are used for the study. The research results show that with the increase of the content of TiAl4822 alloy powder in the raw material, the characteristics of solidified grains change to dendrite → equiaxed → dendrite. The microstructure of the alloy at room temperature changes as follows: αps+β+α2→αp+ αs2+β/B2 → α+α2+β/B2 → α2+B2 → α2+γ+B2 → α2+γ. Due to the change of the phase content of different alloy compositions, the Vickers hardness of the matrix first increases and then decreases, the overall hardness value changes in the range of about 450-620HV when the powder proportion is 50%-70%. If the intermediate composition alloy is directly used as the transition layer, the hardness will suddenly change. Therefore, the selection of the transition layer alloy composition should consider the range close to pure TC25G or TiAl4822.The above results provide the basis for the composition selection of bimetallic transition layer alloys to avoid the intermediate proportion of powder content range.

关键词

激光熔炼技术 / 梯度成分合金 / 凝固组织 / 相演变 / 硬度转变

Key words

laser melting technology / gradient composition alloy / solidification microstructure / phase evolution / hardness mutation

中图分类号

TB31 / TG146.2+3

引用本文

导出引用
王洋 , 冉先喆 , 苏磊 , . 激光快速熔炼TC25G-TiAl4822梯度成分合金凝固组织演变行为. 材料工程. 2025, 53(3): 95-104 https://doi.org/10.11868/j.issn.1001-4381.2023.000291
Yang WANG, Xianzhe RAN, Lei SU, et al. Microstructure evolution behavior of gradient composition alloy between TC25G and TiAl4822 prepared by laser rapid melting[J]. Journal of Materials Engineering. 2025, 53(3): 95-104 https://doi.org/10.11868/j.issn.1001-4381.2023.000291

参考文献

[1]
毕中南. 航空发动机用高温合金及其制备技术 [J]. 大飞机2021(3): 12-15.
[2]
LASALMONIE A. Intermetallics: why is it so difficult to introduce them in gas turbine engines? [J]. Intermetallics200614(10/11): 1123-1129.
[3]
王科. 航空发动机用整体叶盘制造技术 [J]. 新材料产业2017(5): 35-38.
[4]
CHEN Y YANG C FAN C, et al. Microstructure evolution mechanism and mechanical properties of TC11-TC17 dual alloy after annealing treatment [J]. Journal of Alloys and Compounds2020842:1-12.
[5]
XU Z J ZHANG Y Z LIU M K, et al. Interface microstructure evolution and bonding strength of TC11/γ-TiAl bi-materials fabricated by laser powder deposition [J]. Rare Metals201435(6): 456-462.
[6]
蔡建明, 田丰, 刘东, 等. 600 ℃高温钛合金双性能整体叶盘锻件制备技术研究进展 [J]. 材料工程201846(5): 36-43.
CAI J M TIAN F LIU D, et al. Research progress in manufacturing technology of 600 ℃ high temperature titanium alloy dual property blisk forging[J]. Journal of Materials Engineering. 201846(5): 36-43.
[7]
蔡建明, 弭光宝, 高帆, 等. 航空发动机用先进高温钛合金材料技术研究与发展 [J]. 材料工程201644(8): 1-10.
CAI J M MI G B GAO F,et al. Manufacturing of high temperature titanium alloy dual-property blisk used for advanced aero-engine[J]. Journal of Materials Engineering201644(8): 1-10.
[8]
王晋强. TC25G钛合金整体叶盘锻件成形均匀性控制研究 [D]. 重庆:重庆大学, 2018.
WANG J Q. Study on forming uniformity control of TC25G titanium alloy blisk [D]. Chongqing: Chongqing University,2018.
[9]
王丽瑛, 魏寿庸, 高博, 等. 退火制度对TC25钛合金棒材组织和力学性能的影响 [J]. 钛工业进展201128(2): 36-38.
WANG L Y WEI S Y GAO B, et al. Effect of annealing treatment on microstructure and mechanical properties of TC25G titanium alloy bars[J]. Titanium Industry Progress201128(2): 36-38.
[10]
张伟,王丽瑛,李渭清,等.热处理对TC25G钛合金大规格棒材组织性能的影响[C]∥第十六届全国钛及钛合金学术交流会论文集. 西安:第十六届全国钛及钛合金学术交流会,2016:492-494.
ZHANG W WANG L Y LI W Q, et al. Effect of heat treatment on microstructure and mechanical properties of large-sized bar titanium TC25G[C]∥Proceedings of The 16th National Titanium and Titanium Alloy Academic Exchange Conference.Xi’an:The 16th National Titanium and Titanium Alloy Academic Exchange Conference,2016:492-494.
[11]
焦勇, 吴天栋, 张利军,等. 热处理对铸态Ti48Al2Cr2Nb1B合金组织和性能的影响 [J]. 钛工业进展201835(3): 26-29.
JIAO Y WU T D ZHANG L J, et al. Effect of heat treatment on microstructure and mechanical properties of Ti48Al2Cr2Nb1B alloy[J]. Titanium Industry Progress201835(3): 26-29.
[12]
WANG J LUO Q WANG H, et al. Microstructure characteristics and failure mechanisms of Ti-48Al-2Nb-2Cr titanium aluminide intermetallic alloy fabricated by directed energy deposition technique [J]. Additive Manufacturing202032:101007.
[13]
高润奇, 彭徽, 郭洪波, 等. 电子束选区熔化制备TiAl合金叶片热冲击失效机理 [J]. 航空材料学报202242(5): 91-99.
GAO R Q PENG H GUO H B, et al. Thermal shock failure mechanism of TiAl alloy blade prepared by SEBM[J]. Journal of Aeronautical Materials202242(5): 91-99.
[14]
陈玉勇, 崔宁, 孔凡涛. 变形TiAl合金研究进展 [J]. 航空材料学报201434(4): 112-118.
CHEN Y Y CUI N KONG F T. Progress of deformed TiAl alloys[J]. Journal of Aeronautical Materials201434(4): 112-118.
[15]
WEN G D MA T J LI W Y, et al. Strain-controlled fatigue properties of linear friction welded dissimilar joints between Ti-6Al-4V and Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloys [J]. Materials Science and Engineering: A2014612: 80-88.
[16]
BOBBIO L D OTIS R A BORGONIA J P, et al. Additive manufacturing of a functionally graded material from Ti-6Al-4V to Invar: experimental characterization and thermodynamic calculations [J]. Acta Materialia2017127: 133-142.
[17]
BONNY O AMIT B. Additive manufacturing of Inconel 718-Ti6Al4V bimetallic structures [J]. Additive Manufacturing201822:844-851.
[18]
MA R LIU Z WANG W, et al. Microstructures and mechanical properties of Ti6Al4V-Ti48Al2Cr2Nb alloys fabricated by laser melting deposition of powder mixtures [J]. Materials Characterization2020164: 110321.
[19]
杨模聪, 林鑫, 许小静,等. 激光立体成形Ti60-Ti2AlNb梯度材料的组织与相演变 [J]. 金属学报200945(6): 729-736.
YANG M C LIN X XU X J, et al. Microstructure and phase evolution in Ti60-Ti2AlNb gradient material prepared by laser solid forming [J]. Acta Metallurgica Sinica200945(6):729-736.
[20]
REN H S LIU D TANG H B, et al. Microstructure and mechanical properties of a graded structural material [J]. Materials Science and Engineering:A2014611:362-369.
[21]
ZHANG L W LIN J P XU X J, et al. Growth rate and composition of directionally solidified intermetallic TiAl-Nb alloys with different solidification conditions [J]. Rare Metals201635(1):54-64.
[22]
XU Z OUYANG W LIU Y, et al. Effects of laser polishing on surface morphology and mechanical properties of additive manufactured TiAl components [J]. Journal of Manufacturing Processes202165: 51-59.
[23]
QU H P LI P ZHANG S Q, et al. Microstructure and mechanical property of laser melting deposition (LMD) Ti/TiAl structural gradient material [J]. Materials & Design201031(1): 574-582.
[24]
ZHU Y Y CHEN B TANG H B, et al. Influence of heat treatments on microstructure and mechanical properties of laser additive manufacturing Ti-5Al-2Sn-2Zr-4Mo-4Cr titanium alloy [J]. Transactions of Nonferrous Metals Society of China201828(1): 40-50.
[25]
MIZUTA K HIJIKATA Y FUJII T, et al. Characterization of Ti-48Al-2Cr-2Nb built by selective laser melting [J]. Scripta Materialia2021203: 114107.

基金

国家科技重大专项(2019-Ⅶ-0003-0143)
国家自然科学基金项目(52090044)

评论

PDF(11738 KB)

Accesses

Citation

Detail

段落导航
相关文章

/