
真空离心铸造Incoloy825合金管材数值模拟
杜晓东, 于巍, 杨雪, 王昊杰, 刘国怀, 王昭东
真空离心铸造Incoloy825合金管材数值模拟
Numerical simulation of vacuum centrifugal casting Incoloy825 alloy pipe
采用真空感应熔炼+离心铸造的工艺制备Incoloy825管材,研究其组织的凝固行为和微观晶粒特征。使用ProCAST软件建立真空离心铸造仿真模型,模拟计算合金充型与凝固过程。结果表明:浇注温度为1480~1520 ℃时,金属液成型效果好。铸型转速达到800 r/min以上时,金属液沿铸型壁均匀分布。当浇注温度在1480 ℃以上时,缩孔率减小到0%~1.33%。在浇注温度为1520 ℃、铸型转速为800 r/min工艺下,铸件下、中、上部的开始凝固时间分别为9.61、12.53 s和14.32 s。根据仿真结果制定最优工艺参数并进行铸造实验后,对铸件的微观组织进行分区分析,观察到从铸件中心区到外层区的枝晶平均长度从271 μm逐渐减小至121 μm,显示出组织沿冷却方向存在较高的晶粒尺寸梯度。
To investigate the solidification behavior and microstructure characteristics of Incoloy825 alloy pipe by using the vacuum centrifugal casting (VCC) process, a simulation model of VCC is established using ProCAST software to simulate and calculate the filling and solidification process of the alloy. The results show that the metal liquid exhibits good forming effects at pouring temperatures between 1480 ℃ and 1520 ℃. When the mold rotation speed exceeds 800 r/min, the metal liquid can be uniformly distributed along the mold wall. The pouring temperature above 1480 ℃ reduces the shrinkage rate to 0%-1.33%. At the pouring temperature of 1520 ℃ and the mold rotation speed of 800 r/min, the initial solidification time for the lower, middle, and upper parts of the casting is 9.61, 12.53 s, and 14.32 s, respectively. Based on the simulation results, optimal process parameters are determined and casting experiments are conducted. Microstructure analysis of the castings reveals that the average length of dendrites from the center to the outer layer of the casting gradually decreases from 271 μm to 121 μm, indicating a significant grain size gradient along the cooling direction of the microstructure.
真空离心铸造 / Incoloy825 / 数值模拟 / 充型过程 / 铸态组织 / 游离枝晶
vacuum centrifugal casting / Incoloy825 / numerical simulation / filling process / as-cast structure / free dendrite
TG249.4 / TF815
[1] |
袁和 .苛刻油气井环境中镍基合金腐蚀行为研究[D].西安:西安石油大学,2020.
|
[2] |
贾璐,李永堂.基于42CrMo环件短流程离心铸造工艺数值模拟研究[J]. 铸造设备与工艺,2016(3):19-23.
|
[3] |
|
[4] |
王玮东,马颖澈,周理想,等 .真空感应冶炼中熔体流场和温度场的计算机模拟[J].热加工工艺,2016,45(19):73-76.
|
[5] |
邓传杰,汪选国,杜学铭 .离心铸造复合管外层充型与凝固数值模拟[J].铸造技术,2016,37(6):1197-1201.
|
[6] |
陈瑞润,王新秀,王琪,等 .超大型高钼铸铁缸套离心铸造过程数值模拟[J].特种铸造及有色合金,2022,42(5):529-535.
|
[7] |
刘贞露,肖文丰,孟祥炜,等 .基于ProCast的K4169高温合金铸件离心铸造工艺数值模拟[J].热加工工艺,2017,46(9):104-107.
|
[8] |
韩少丽,骆合力,李尚平,等 .K4169合金离心铸管工艺模拟及试制研究[J].铸造,2021,70(3):373-377.
|
[9] |
张伯明. 离心铸造[M]. 北京:机械工业出版社, 2004.
|
[10] |
霍苗,李思晨,张鹏,等. 单晶高温合金对接铸件内缩松缺陷的数值模拟[J].热加工工艺,2023,52(17):59-62.
|
[11] |
宋广. 离心铸造装置设计及充型凝固过程实验研究与数值模拟[D].哈尔滨:哈尔滨工业大学,2008.
|
[12] |
钟强强,王晶.ProCAST在汽车轮毂制造中的应用[J].有色金属材料与工程,2018,39(6):16-22.
|
[13] |
|
[14] |
王操. 离心铸造与轧制制备AZ91镁合金板材成型工艺研究[D].沈阳:沈阳工业大学,2017.
|
[15] |
马秀萍,周同金,刘东方,等 .真空感应熔炼工艺对镍基高温合金氧氮含量的影响[J].铸造,2019,68(7):730-733.
|
[16] |
|
/
〈 |
|
〉 |