钠离子电池正极材料磷酸铁钠的研究进展

潘文涛, 余新玲, 杨续来, 黄倩

PDF(2409 KB)
PDF(2409 KB)
材料工程 ›› 2025, Vol. 53 ›› Issue (7) : 153-161. DOI: 10.11868/j.issn.1001-4381.2023.000260
综述

钠离子电池正极材料磷酸铁钠的研究进展

作者信息 +

Research progress in NaFePO4 cathode material for sodium-ion batteries

Author information +
History +

摘要

磷酸铁钠(NaFePO4,NFP)正极材料具有稳定的三维结构和较高的理论比容量(154 mAh·g-1)等优势,被认为是有潜力的钠离子电池关键材料之一。NFP分为橄榄石型和磷铁钠矿型两种晶体结构,橄榄石型NFP正极材料具有较高的放电比容量和良好的循环性能,但由于结构上的热力学不稳定,较难通过常规方法合成;磷铁钠矿型NFP虽然具有稳定的晶体结构,却因缺乏良好的钠离子扩散通道,呈现出明显的电化学惰性特征。本文基于对NFP正极材料两种晶体结构特征的分析和总结,综述了NFP材料合成方法(固相法、水热法、置换法和静电纺丝法等)和改性措施(晶体结构调控和材料表面改性等)的研究进展,指出了不同合成方法的优缺点;最后,针对目前面临的挑战和潜在的解决方案进行总结和展望,以期推动NFP材料在钠离子电池中的实用化进程。

Abstract

Sodium iron phosphate (NaFePO4, NFP), a cathode material renowned for its stable three-dimensional structure and high theoretical specific capacity of 154 mAh·g-1, stands out as a pivotal component in sodium ion batteries. NFP exists in two distinct crystal structures: triphylite and maricite. The triphylite variety boasts a long lifespan and high reversible capacity, yet its structural thermodynamic instability poses challenges for conventional synthesis methods. Conversely, the maricite structure is stable but exhibits electrochemically inert characteristics due to the absence of cationic transport channels. Both structures suffer from low conductivity and sluggish reaction kinetics, hindering their industrial applications. This paper delves into the characteristics of these two crystal structures and summarizes various synthesis methods, including solid-state, hydrothermal, displacement, and electrospinning, as well as modification techniques such as crystal structure regulation and material surface modification. Additionally, it identifies the key challenges faced by NFP cathodes and presents potential solutions, while also outlining future research directions.

关键词

钠离子电池 / 正极材料 / 磷酸铁钠 / 合成方法 / 改性措施

Key words

sodium-ion battery / cathode material / sodium iron phosphate / synthesis method / modification measure

中图分类号

TM911 / TQ152

引用本文

导出引用
潘文涛 , 余新玲 , 杨续来 , . 钠离子电池正极材料磷酸铁钠的研究进展. 材料工程. 2025, 53(7): 153-161 https://doi.org/10.11868/j.issn.1001-4381.2023.000260
Wentao PAN, Xinling YU, Xulai YANG, et al. Research progress in NaFePO4 cathode material for sodium-ion batteries[J]. Journal of Materials Engineering. 2025, 53(7): 153-161 https://doi.org/10.11868/j.issn.1001-4381.2023.000260

参考文献

[1]
COSTA E WELLS P WANG L, et al. The electric vehicle and renewable energy: changes in boundary conditions that enhance business model innovations[J]. Journal of Cleaner Production2022333: 130034.
[2]
SRIDHAR S SALKUTI S R. Development and future scope of renewable energy and energy storage systems[J]. Smart Cities20225(2): 668-699.
[3]
TROTTA F WANG G J GUO Z, et al. A comparative techno-economic and lifecycle analysis of biomass-derived anode materials for lithium-and sodium-ion batteries[J]. Advanced Sustainable Systems20226(6): 2200047.
[4]
RAMESH A TRIPATHI A BALAYA P. A mini review on cathode materials for sodium-ion batteries[J]. International Journal of Applied Ceramic Technology202219(2): 913-923.
[5]
张福明,王静,张鹏,等.有机电解液在钠离子电池中的研究进展[J].材料工程202149(1):11-22.
ZHANG F M WANG J ZHANG P, et al. Research progress of organic electrolytes in sodium ion batteries [J]. Journal of Materials Engineering202149 (1): 11-22.
[6]
CHEN T OUYANG B FAN X, et al. Oxide cathodes for sodium-ion batteries: designs, challenges, and perspectives[J]. Carbon Energy20224(2): 170-199.
[7]
YI Z FU J MU Z, et al. LiFePO4@C/graphene composite and in situ prepared NaFePO4@C/graphene composite as high-performance cathode materials for electrochemical energy storage[J]. Journal of Materials Science: Materials in Electronics202334(6): 469.
[8]
ZHAO L N ZHANG T ZHAO H L, et al. Polyanion-type electrode materials for advanced sodium-ion batteries[J]. Materials Today Nano202010: 100072.
[9]
HE L LI H GE X, et al. Iron-phosphate-based cathode materials for cost-effective sodium-ion batteries: development, challenges, and prospects[J]. Advanced Materials Interfaces20229(20): 2200515.
[10]
何仁杰,李书萍,王许敏,等.锂离子电池厚电极结构设计的研究进展[J].材料工程202250(10):38-54.
HE R J LI S P WANG X M, et al. Research progress of lithium-ion batteries thick-electrode architectural design [J]. Journal of Materials Engineering202250(10):38-54.
[11]
SHARMA M MURUGAVEL S KAGHAZCHI P. Polaron transport mechanism in maricite NaFePO4: a combined experimental and simulation study[J]. Journal of Power Sources2020469: 228348.
[12]
ZHENG M BAI Z HE Y W, et al. Anionic redox processes in maricite-and triphylite-NaFePO4 of sodium-ion batteries[J]. ACS Omega20205(10): 5192-5201.
[13]
JIN T LI H ZHU K, et al. Polyanion-type cathode materials for sodium-ion batteries[J]. Chemical Society Reviews202049(8): 2342-2377.
[14]
BORISOV S V PERVUKHINA N V MAGARILL S A. Crystallographic analysis and structural features of honeycomb cation frameworks in Na2FePO4F, NaFePO4, and LiVOPO4 structures[J]. Journal of Structural Chemistry202364(7):1283-1295.
[15]
KANWADE A GUPTA S KANKANE A, et al. Phosphate-based cathode materials to boost the electrochemical performance of sodium-ion batteries[J]. Sustainable Energy & Fuels20226(13): 3114-3147.
[16]
WALCZAK K KULKA A GEDZIOROWSKI B, et al. Surface investigation of chemically delithiatied FePO4 as a cathode material for sodium ion batteries[J]. Solid State Ionics2018319: 186-193.
[17]
XIONG F AN Q XIA L, et al. Revealing the atomistic origin of the disorder-enhanced Na-storage performance in NaFePO4 battery cathode[J]. Nano Energy201957: 608-615.
[18]
BERLANGA C MONTERRUBIO I ARMAND M, et al. Cost-effective synthesis of triphylite-NaFePO4 cathode: a zero-waste process[J]. ACS Sustainable Chemistry & Engineering20198(2): 725-730.
[19]
SAUREL D GALCERAN M REYNAUD M, et al. Rate dependence of the reaction mechanism in olivine NaFePO4 Na-ion cathode material[J]. International Journal of Energy Research201842(10): 3258-3265.
[20]
CASAS-CABANAS M RODDATIS V V SAUREL D, et al. Crystal chemistry of Na insertion/deinsertion in FePO4-NaFePO4 [J]. Journal of Materials Chemistry201222(34): 17421-17423.
[21]
WILSON G ZILINSKAITE S UNKA S, et al. Establishing operando diffraction capability through the study of Li-ion (de) intercalation in LiFePO4 [J]. Energy Reports20206: 174-179.
[22]
ZHU Y XU Y LIU Y, et al. Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries[J]. Nanoscale20135(2): 780-787.
[23]
JANZEN M KRAMER D MÖNIG R. Switching from lithium to sodium-an operando investigation of an FePO4 electrode by mechanical measurements and electron microscopy[J]. Energy Technology20219(6): 2000867.
[24]
ALI G, LEE J H SUSANTO D, et al. Polythiophene-wrapped olivine NaFePO4 as a cathode for Na-ion batteries[J]. ACS Applied Materials & Interfaces20168(24): 15422-15429.
[25]
LE PAGE Y DONNAY G. The crystal structure of the new mineral maricite, NaFePO4 [J]. The Canadian Mineralogist197715(4): 518-521.
[26]
MOREAU P GUYOMARD D GAUBICHER J, et al. Structure and stability of sodium intercalated phases in olivine FePO4 [J]. Chemistry of Materials201022(14): 4126-4128.
[27]
TANG W SONG X DU Y, et al. High-performance NaFePO4 formed by aqueous ion-exchange and its mechanism for advanced sodium ion batteries[J]. Journal of Materials Chemistry A20164(13): 4882-4892.
[28]
YANG Z LI Y MA P. Impact of sintering temperature on H2TiO3 lithium-ion sieves synthesised via the solid-phase method[J]. Journal of Materials Science: Materials in Electronics202233(29): 23128-23136.
[29]
ZHAO L ZHOU D HUANG W, et al. Electrochemical performances of maricite NaFePO4/C as cathode material for sodium-ion and lithium-ion batteries[J]. Int J Electrochem Sci201712(4): 3153-3165.
[30]
HWANG J MATSUMOTO K ORIKASA Y, et al. Crystalline maricite NaFePO4 as a positive electrode material for sodium secondary batteries operating at intermediate temperature[J]. Journal of Power Sources2018377: 80-86.
[31]
KARTHIK M SATHISHKUMAR S BOOPATHIRAJA R, et al. Design and fabrication of NaFePO4/MWCNTs hybrid electrode material for sodium-ion battery[J]. Journal of Materials Science: Materials in Electronics202031(23): 21792-21801.
[32]
XU Y DAI R WANG X, et al. High-performance triphylite-NaFePO4 synthesized by solvothermal sodium insertion process for sodium-ion batteries[J]. Chemical Physics Letters2024834: 140983.
[33]
BERLANGA C SOUGRATI M T FERNANDEZ-ROPERO A J, et al. Unravelling the electrochemical activation and the reaction mechanism of maricite-NaFePO4 using multimodal operando techniques[J]. Journal of Materials Chemistry A202311(38): 20506-20517.
[34]
YADAV S N RAJOBA S J KALUBARME R S, et al. Solution combustion synthesis of NaFePO4 and its electrochemical performance[J]. Chinese Journal of Physics202169: 134-142.
[35]
WANG D CAI P ZOU G Q, et al. Ultra-stable carbon-coated sodium vanadium phosphate as cathode material for sodium-ion battery[J]. Rare Metals202241: 115-124.
[36]
CONTI D M URRU C BRUNI G, et al. High C-rate performant electrospun LiFePO4/carbon nanofiber self-standing cathodes for lithium-ion batteries[J]. Electrochem20245(2): 223-242.
[37]
LIU-THÉATO X INDRIS S HUA W, et al. Self-standing, collector-free maricite NaFePO4/carbon nanofiber cathode endowed with increasing electrochemical Activity[J]. Energy & Fuels202135(22): 18768-18777.
[38]
刘雯雯,周健,文小强,等.喷雾干燥-低温烧结的NaFePO4制备及其电化学性能[J].矿冶工程201737(6):117-120.
LIU W W ZHOU J WEN X Q, et al. Preparation of NaFePO4 by spray drying low-temperature sintering and its electrochemical properties [J]. Mining and Metallurgical Engineering201737 (6): 117-120
[39]
SAVEETHA S VIJAYALAKSHMI K,Optimization of NaFePO4 nanoparticles act as cathode in sodium-ion batteries[J]. Indian Journal of Pure & Applied Physics202260(7): 572-575.
[40]
WAZEER W NABIL M M FETEHA M, et al. Ultra-fast green microwave assisted synthesis of NaFePO4-C nanocomposites for sodium ion batteries and supercapacitors[J]. Scientific Reports202212(1): 16307.
[41]
HIRATSUKA M HONMA T KOMATSUASTU T. Vitrification of maricite NaFePO4 crystal by laser irradiation and enhanced sodium ion battery performance[J]. Journal of Alloys and Compounds2021885: 160928.
[42]
BONG J H ADAMS S. Molecular dynamics simulations of amorphous NaFePO4 as an Na-ion battery cathode material[J]. Functional Materials Letters202114(3): 2141006.
[43]
LIU Y ZHANG N WANG F, et al. Approaching the downsizing limit of maricite NaFePO4 toward high-performance cathode for sodium-ion batteries[J]. Advanced Functional Materials201828(30): 1801917.
[44]
MA X XIA J WU X, et al. Remarkable enhancement in the electrochemical activity of maricite NaFePO4 on high-surface-area carbon cloth for sodium-ion batteries[J]. Carbon2019146: 78-87.
[45]
LIU B ZHANG Q LI L, et al. Achieving highly electrochemically active maricite NaFePO4 with ultrafine NaFePO4@C subunits for high rate and low temperature sodium-ion batteries[J]. Chemical Engineering Journal2021405: 126689.
[46]
GUO Z YAO X TIAN H, et al. Effect of Zn-doping on the electrochemical performance of NaFePO4/C cathode material for lithium ion battery[J]. International Journal of Electrochemical Science202116(7): 210758.
[47]
WANG D WU Y LV J, et al. Carbon encapsulated maricite NaFePO4 nanoparticles as cathode material for sodium-ion batteries[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects2019583: 123957.
[48]
BOYADZHIEVA T KOLEVA V MARKOV P, et al. Iron oxidation to amplify the Na and Li storage capacities of nano-sized maricite NaFePO4 [J]. Dalton Transactions202150(45): 16548-16561.
[49]
XU S YUAN J MA D, et al. Hollow spherical Na3.95Fe2.95V0.05(PO42P2O7 suppressing inactive maricite-NaFePO4 with ultrahigh dynamics performance[J].Nano Energy2024132: 110404.
[50]
REN W QIN M ZHOU Y, et al. Electrospun Na4Fe3(PO42(P2O7) nanofibers as free-standing cathodes for ultralong-life and high-rate sodium-ion batteries[J]. Energy Storage Materials202354: 776-783.
[51]
ZHU X MOCHIKU T FUJII H, et al. A new sodium iron phosphate as a stable high-rate cathode material for sodium ion batteries[J]. Nano Research201811(12): 6197-6205.
[52]
JEONG S KIM B H PARK Y D, et al. Artificially coated NaFePO4 for aqueous rechargeable sodium-ion batteries[J]. Journal of Alloys and Compounds2019784: 720-726.
[53]
SHIN M R SON J T. Shape-control of a 0D/1D NaFe0.9Mn0.1PO4 nano-complex by electrospinning[J]. Journal of the Korean Physical Society201872(6): 703-708.
[54]
WANG R WU S ZHANG F,et al.Stabilizing the crystal structures of NaFePO4 with Li substitutions[J].Physical Chemistry Chemical Physics202022(25):13975-13980.
[55]
HENRIKSEN C MATHIESEN J K CHIANG Y M, et al. Reducing transformation strains during Na intercalation in olivine FePO4 cathodes by Mn substitution[J]. ACS Applied Energy Materials20192(11): 8060-8067.

基金

安徽省科技重大专项项目(2021e03020001)
安徽省质检院新能源电动汽车高压零部件检验检测公共服务平台项目(2021-445)

评论

PDF(2409 KB)

Accesses

Citation

Detail

段落导航
相关文章

/