激光冲击强化对Inconel 625合金表面形貌及微观组织的影响

贾智, 衡亚博, 姬金金, 汪彦江, 孙璇, 杨佩瑶

PDF(11768 KB)
PDF(11768 KB)
材料工程 ›› 2025, Vol. 53 ›› Issue (5) : 226-235. DOI: 10.11868/j.issn.1001-4381.2023.000121
研究论文

激光冲击强化对Inconel 625合金表面形貌及微观组织的影响

作者信息 +

Effect of laser shock peening on surface morphology and microstructure of Inconel 625 alloy

Author information +
History +

摘要

通过激光冲击强化(laser shock peening,LSP)技术调控Inconel 625合金表面微观组织,优化表面形貌。采用激光扫描共聚焦显微镜、电子背散射衍射(EBSD)显微镜以及透射电子显微镜(TEM)等方法表征其微观组织,并利用维氏显微硬度计分析其硬度变化。结果表明:在适当的LSP技术下能够消除冲击凹坑,提升表面质量。在LSP作用下,微观组织呈梯度变化,表层微观结构转变为超细层、超细晶等结构,且主要以亚结构与变形晶粒为主,而过渡层为变形晶粒及再结晶组织。随着深度的加深,变形晶粒减少,而再结晶晶粒增多。对5次LSP的合金几何必须位错ρ GND进行定量分析发现:表层ρ GND为2.91×1014 m-2,原始层为0.61×1014 m-2,LSP后表层位错密度提升。位错密度的变化导致显微硬度发生转变,显微硬度随LSP次数增加而增加,随深度的加深而减小。LSP过程改变了大小角度晶界占比,对Inconel 625合金晶界强化贡献符合Hall-Petch关系。

Abstract

The surface microstructure of Inconel 625 alloy is refined through the application of laser shock peening (LSP) technology, aiming at optimizing its surface morphology.The microstructural characteristics are examined using laser scanning confocal microscopy, electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM). Vickers microhardness testing is employed to analyze hardness variations. The results show that suitable LSP conditions can eliminate impact pits and enhance surface quality. Furthermore, the microstructure gradually transitions, with the surface layer evolving into ultrafine lamellae and grains under LSP treatment. The surface layer is predominantly composed of substructures and deformed grains, whereas the transition layer features a mix of deformed grains and recrystallized structures. As the depth increases, the population of deformed grains decreases, and recrystallized grains increases. A quantitative assessment of the geometrically necessary dislocation density (ρ GND) for the alloy after five LSP treatments show that the surface ρ GND reaches 2.91×1014 m-2, compared to 0.61×1014 m-2 for the untreated layer, indicating a significant increase post LSP. This alteration in dislocation density results in a shift in microhardness, which escalates with the number of LSP cycles and diminishes with depth. This trend can be attributed to LSP-induced changes in the proportion of large-angle grain boundaries, with the grain boundary strengthening effect in Inconel 625 alloy adhering to the Hall-Petch relationship.

关键词

Inconel 625合金 / 激光冲击强化 / 表面形貌 / 微观组织

Key words

Inconel 625 alloy / laser shock processing / surface morphology / microstructure

中图分类号

TG176 / TB31

引用本文

导出引用
贾智 , 衡亚博 , 姬金金 , . 激光冲击强化对Inconel 625合金表面形貌及微观组织的影响. 材料工程. 2025, 53(5): 226-235 https://doi.org/10.11868/j.issn.1001-4381.2023.000121
Zhi JIA, Yabo HENG, Jinjin JI, et al. Effect of laser shock peening on surface morphology and microstructure of Inconel 625 alloy[J]. Journal of Materials Engineering. 2025, 53(5): 226-235 https://doi.org/10.11868/j.issn.1001-4381.2023.000121

参考文献

1
高钰璧, 丁雨田, 孟斌, 等. Inconel 625合金中析出相演变研究进展[J]. 材料工程202048(5): 13-22.
GAO Y B DING Y T MENG B, et al. Research progress in evolution of precipitated phases in Inconel 625 superalloy [J]. Journal of Materials Engineering202048(5): 13-22.
2
WU L H JIANG C H. Effect of shot peening on residual stress and microstructure in the deformed layer of Inconel 625[J]. Materials Transactions201758: 164-166.
3
WU L H JIANG C H. Effect of thermal relaxation on residual stress and microstructure in the near surface layers of dual shot peened Inconel 625[J]. Advances in Mechanical Engineering201810: 1-6.
4
MONTROSS C S WEI T LIN Y, et al. Laser shock processing and its effects on microstructure and properties of metal alloys: a review[J]. International Journal of Fatigue200224(10): 1021-1036.
5
SONG B XIAO W WANG J, et al. Effects of cryogenic treatments on phase transformations, microstructure and mechanical properties of near βTi alloy[J]. Journal of Alloys and Compounds2021879: 160495.
6
HU Y L LI Y L ZHANG S Y, et al. Effect of solution temperature on static recrystallization and ductility of Inconel 625 superalloy fabricated by directed energy deposition[J]. Materials Science and Engineering2020772(20): 138711.
7
ÖZGÜR ÖZGÜN YILMAZ R ÖZKAN GÜLSOY H, et al. The effect of aging treatment on the fracture toughness and impact strength of injection molded Ni-625 superalloy parts[J]. Materials Characterization2015108: 8-15.
8
CLAUER A H HOLBROOK J H FAIRAND B P. Effects of laser induced shock waves on metals[J]. Springer US1981.
9
HOFFMAN C G. Laser-target interactions[J]. Journal of Applied Physics197445(5): 2125-2128.
10
陈松玲, 周建忠, 黄舒, 等. 激光喷丸强化In718高温合金抗热腐蚀机理[J]. 排灌机械工程学报202139(10): 1068-1074.
CHEN S L ZHOU J Z HUANG S, et al. Mechanism of hot corrosion resistance of In718 superalloy strengthened by laser peening [J]. Journal of Drainage and Irrigation Machinery Engineering202139(10): 1068-1074.
11
LIU Y WANG L YANG K, et al. Effects of thermally assisted warm laser shock processing on the microstructure and fatigue property of In718 superalloy[J]. Acta Metallurgica Sinica202134: 1645-1656.
12
CAO J D ZHANG J S HUA Y Q, et al. Microstructure and hot corrosion behavior of the Ni-based superalloy GH202 treated by laser shock processing[J]. Materials Characterization2017125: 67-75.
13
杨颖秋, 周建忠, 盛杰, 等. Inconel X-750镍基合金激光喷丸抗热腐蚀性能及机理[J]. 光学学报201737(6): 160-166.
YANG Y Q ZHOU J Z SHENG J, et al. Hot-corrosion-resistance property and mechanism of Inconel X-750 nickel-based alloy processed by laser peening [J]. Acta Optica Sinica201737(6): 160-166.
14
瞿祥明, 朱海燕, 赵艳云, 等. 激光冲击强化对FGH95粉末合金的表面完整性研究[J]. 电加工与模具2022371(6): 41-45.
QU X M ZHU H Y ZHAO Y, et al. Study on surface integrity of FGH95 powder alloy by laser shock processing[J]. Electromachining & Mould2022371(6): 41-45.
15
黄舒, 盛杰, 周建忠, 等. IN718镍基合金激光喷丸微观组织特性及其高温稳定性[J]. 稀有金属材料与工程201645(12): 3284-3289.
HUANG S SHENG J ZHOU J Z, et al. Microstructure characteristics and high-temperature performance of laser peened IN718 nickel-based alloy[J]. Rare Metal Materials and Engineering201645(12): 3284-3289.
16
PIPPAN R SCHERIAU S TAYLOR A, et al. Saturation of fragmentation during severe plastic deformation[J]. Annual Review of Materials Research201040: 319-343.
17
ZHILYAEV A P LANGDON T G. Using high-pressure torsion for metal processing: fundamentals and applications[J]. Progress in Materials Science200853(6): 893-979.
18
PAN H KANG R LI J, et al. Mechanistic investigation of a low-alloy Mg-Ca-based extrusion alloy with high strength-ductility synergy[J]. Acta Materialia2020186: 278-290.
19
GAO H HUANG Y NIX W D, et al. Mechanism-based strain gradient crystal plasticity—Ⅰ theory[J]. Journal of the Mechanics and Physics of Solids199947(6): 1239-1263.
20
KUBIN L P MORTENSEN A. Geometrically necessary dislocations and strain-gradient plasticity: a few critical issues[J]. Scripta Materialia200348(2): 119-125.
21
HE Z F JIA N MA D, et al. Joint contribution of transformation and twinning to the high strength-ductility combination of a FeMnCoCr high entropy alloy at cryogenic temperatures[J]. Materials Science and Engineering: A2019759: 437-447.
22
CHEN L REN X D. Evolution of microstructure and grain refinement mechanism of pure nickel induced by laser shock peening[J]. Materials Science and Engineering: A2018728: 20-29.
23
HALL E O. The deformation and ageing of mild steel: iii discussion of results[J]. Proceedings of the Physical Society195164(9): 747.
24
PETCH N J. The cleavage strength of polycrystals[J]. Journal of the Iron and Steel Institute1953174: 25-28.
25
NK A, XH B, NT C, et al. Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed[J]. Acta Materialia200957(14): 4198-4208.
26
HUGHES D A HANSEN N. Microstructure and strength of nickel at large strains[J]. Acta Materialia200048(11): 2985-3004.
27
LUO Z P ZHANG H W HANSEN N, et al. Quantification of the microstructures of high purity nickel subjected to dynamic plastic deformation[J]. Acta Materialia201260(3): 1322-1333.

基金

国家自然科学基金(52265049)
甘肃省高等学校产业支撑计划项目(2022CYZC-26)
兰州理工大学红柳优秀青年支持计划(CGZH001)

评论

PDF(11768 KB)

Accesses

Citation

Detail

段落导航
相关文章

/