
激光冲击强化对Inconel 625合金表面形貌及微观组织的影响
贾智, 衡亚博, 姬金金, 汪彦江, 孙璇, 杨佩瑶
激光冲击强化对Inconel 625合金表面形貌及微观组织的影响
Effect of laser shock peening on surface morphology and microstructure of Inconel 625 alloy
通过激光冲击强化(laser shock peening,LSP)技术调控Inconel 625合金表面微观组织,优化表面形貌。采用激光扫描共聚焦显微镜、电子背散射衍射(EBSD)显微镜以及透射电子显微镜(TEM)等方法表征其微观组织,并利用维氏显微硬度计分析其硬度变化。结果表明:在适当的LSP技术下能够消除冲击凹坑,提升表面质量。在LSP作用下,微观组织呈梯度变化,表层微观结构转变为超细层、超细晶等结构,且主要以亚结构与变形晶粒为主,而过渡层为变形晶粒及再结晶组织。随着深度的加深,变形晶粒减少,而再结晶晶粒增多。对5次LSP的合金几何必须位错ρ GND进行定量分析发现:表层ρ GND为2.91×1014 m-2,原始层为0.61×1014 m-2,LSP后表层位错密度提升。位错密度的变化导致显微硬度发生转变,显微硬度随LSP次数增加而增加,随深度的加深而减小。LSP过程改变了大小角度晶界占比,对Inconel 625合金晶界强化贡献符合Hall-Petch关系。
The surface microstructure of Inconel 625 alloy is refined through the application of laser shock peening (LSP) technology, aiming at optimizing its surface morphology.The microstructural characteristics are examined using laser scanning confocal microscopy, electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM). Vickers microhardness testing is employed to analyze hardness variations. The results show that suitable LSP conditions can eliminate impact pits and enhance surface quality. Furthermore, the microstructure gradually transitions, with the surface layer evolving into ultrafine lamellae and grains under LSP treatment. The surface layer is predominantly composed of substructures and deformed grains, whereas the transition layer features a mix of deformed grains and recrystallized structures. As the depth increases, the population of deformed grains decreases, and recrystallized grains increases. A quantitative assessment of the geometrically necessary dislocation density (ρ GND) for the alloy after five LSP treatments show that the surface ρ GND reaches 2.91×1014 m-2, compared to 0.61×1014 m-2 for the untreated layer, indicating a significant increase post LSP. This alteration in dislocation density results in a shift in microhardness, which escalates with the number of LSP cycles and diminishes with depth. This trend can be attributed to LSP-induced changes in the proportion of large-angle grain boundaries, with the grain boundary strengthening effect in Inconel 625 alloy adhering to the Hall-Petch relationship.
Inconel 625合金 / 激光冲击强化 / 表面形貌 / 微观组织
Inconel 625 alloy / laser shock processing / surface morphology / microstructure
TG176 / TB31
1 |
高钰璧, 丁雨田, 孟斌, 等. Inconel 625合金中析出相演变研究进展[J]. 材料工程, 2020, 48(5): 13-22.
|
2 |
|
3 |
|
4 |
|
5 |
|
6 |
|
7 |
|
8 |
|
9 |
|
10 |
陈松玲, 周建忠, 黄舒, 等. 激光喷丸强化In718高温合金抗热腐蚀机理[J]. 排灌机械工程学报, 2021, 39(10): 1068-1074.
|
11 |
|
12 |
|
13 |
杨颖秋, 周建忠, 盛杰, 等. Inconel X-750镍基合金激光喷丸抗热腐蚀性能及机理[J]. 光学学报, 2017, 37(6): 160-166.
|
14 |
瞿祥明, 朱海燕, 赵艳云, 等. 激光冲击强化对FGH95粉末合金的表面完整性研究[J]. 电加工与模具, 2022, 371(6): 41-45.
|
15 |
黄舒, 盛杰, 周建忠, 等. IN718镍基合金激光喷丸微观组织特性及其高温稳定性[J]. 稀有金属材料与工程, 2016, 45(12): 3284-3289.
|
16 |
|
17 |
|
18 |
|
19 |
|
20 |
|
21 |
|
22 |
|
23 |
|
24 |
|
25 |
NK A, XH B, NT C, et al. Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed[J]. Acta Materialia, 2009, 57(14): 4198-4208.
|
26 |
|
27 |
|
/
〈 |
|
〉 |