可充电镁硫二次电池研究进展

杜文涛, 闫晓燕, 刘宝胜, 赵新新, 张晓华, 王明菊

PDF(870 KB)
PDF(870 KB)
材料工程 ›› 2025, Vol. 53 ›› Issue (2) : 96-105. DOI: 10.11868/j.issn.1001-4381.2022.001048
综述

可充电镁硫二次电池研究进展

作者信息 +

Research progress in rechargeable magnesium-sulfur secondary batteries

Author information +
History +

摘要

新兴的储能技术必须满足低成本、合理安全、自然资源丰富、能量密度高的要求。可充电镁硫(Mg-S)电池具有高能量密度、高安全性、成本低等优点。然而受自放电、快速容量损失、镁负极钝化和硫正极利用率低等问题的限制,其性能受到限制。本文综述近年来镁硫电池研究进展,重点介绍非亲核电解质、正极和负极的研究进展,总结能够促进可逆沉积和溶解镁离子的电解质,同时保持与硫正极和其他电池组件的兼容性。此外结合研究趋势对镁硫电池当前面临的挑战,即硫化物的溶解、扩散和Mg-S电池反应动力学缓慢等问题进行探讨以及结合未来的前景给出建议,如对MOFs掺杂不同元素、探究电池的反应机理等。

Abstract

Emerging energy storage technologies must meet the requirements of low cost, reasonable safety, rich natural resources and high energy density. The rechargeable magnesium sulfur (Mg-S) battery has the advantages of high energy density, high safety, low cost,and so on. However, its performance is limited by self-discharge, rapid capacity loss, magnesium anode passivation,and low sulfur utilization. The recent advances in Mg-S battery research, focusing on the advances in non-nucleophilic electrolytes, anodes,and cathodes, summarizing electrolytes that can facilitate reversible deposition and dissolution of magnesium ions,and maintaining compatibility with sulfur cathodes and other battery components are reviewed in this paper. In addition, the current challenges of magnesium-sulfur batteries are discussed in the context of research trends, such as the dissolution and diffusion of sulfides and the slow reaction kinetics of Mg-S batteries, as well as recommendations for the future, such as doping MOFs with different elements and exploring the reaction mechanism of the batteries.

关键词

镁硫电池 / 电解质 / 硫正极 / 多硫化物

Key words

Mg-S battery / electrolyte / sulfur cathode / polysulfide

中图分类号

TB33 / TQ152

引用本文

导出引用
杜文涛 , 闫晓燕 , 刘宝胜 , . 可充电镁硫二次电池研究进展. 材料工程. 2025, 53(2): 96-105 https://doi.org/10.11868/j.issn.1001-4381.2022.001048
Wentao DU, Xiaoyan YAN, Baosheng LIU, et al. Research progress in rechargeable magnesium-sulfur secondary batteries[J]. Journal of Materials Engineering. 2025, 53(2): 96-105 https://doi.org/10.11868/j.issn.1001-4381.2022.001048

参考文献

[1]
KONG L LI B Q PENG H J, et al. Porphyrin-derived graphene-based nanosheets enabling strong polysulfide chemisorption and rapid kinetics in lithium-sulfur batteries[J]. Advanced Energy Materials20188(20): 1800849.
[2]
陈颖, 姜庆辉, 辛集武, 等. 相变储能材料及其应用研究进展[J]. 材料工程201947(7): 1-10.
CHEN Y JIANG Q H XIN J W, et al. Research status and application of phase change energy storage materials[J]. Journal of Materials Engineering201947(7): 1-10.
[3]
MANTHIRAM A FU Y SU Y S. Challenges and prospects of lithium-sulfur batteries[J]. Accounts of Chemical Research201346(5): 1125-1134.
[4]
KONG L CHEN X LI B Q, et al. A bifunctional perovskite promoter for polysulfide regulation toward stable lithium-sulfur batteries[J]. Advanced Materials201830(2): 1705219.
[5]
RASHAD M ASIF M, ALI Z. Quest for magnesium-sulfur batteries: current challenges in electrolytes and cathode materials developments[J]. Coordination Chemistry Reviews2020415: 213312.
[6]
ZHAO-KARGER Z BARDAJI M E G FUHR O, et al. A new class of non-corrosive, highly efficient electrolytes for rechargeable magnesium batteries[J]. Journal of Materials Chemistry A20175(22): 10815-10820.
[7]
LU Y WANG C LIU Q, et al. Progress and perspective on rechargeable magnesium-sulfur batteries[J]. Small Methods20215(5): 2001303.
[8]
肖建华, 赵宇星, 范海燕, 等. 镁硫二次电池研究进展[J]. 硅酸盐学报20207(48): 963-977.
XIAO J H ZHAO Y X FAN H Y, et al. Research progress on magnesium-sulfur secondary batteries[J]. Journal of the Chinese Ceramic Society20207(48): 963-977.
[9]
MULDOON J BUCUR C B OLIVER A G, et al. Electrolyte roadblocks to a magnesium rechargeable battery[J]. Energy & Environmental Science20125(3): 5941-5950.
[10]
LEI T OU-YANG C TANG W, et al. Enhanced corrosion protection of MgO coatings on magnesium alloy deposited by an anodic electrodeposition process[J]. Corrosion Science201052(10): 3504-3508.
[11]
GAO T JI X HOU S, et al. Thermodynamics and kinetics of sulfur cathode during discharge in MgTFSI2-DME electrolyte[J]. Advanced Materials201830(3): 1704313.
[12]
MUTHURAJ D PANDEY M KRISHNA M, et al. Magnesium polysulfide catholyte (MgS x ): synthesis, electrochemical and computational study for magnesium-sulfur battery application[J]. Journal of Power Sources2021486: 229326.
[13]
LIEBENOW C YANG Z LOBITZ P. The electrodeposition of magnesium using solutions of organomagnesium halides, amidomagnesium halides and magnesium organoborates[J]. Electrochemistry Communications20002(9): 641-645.
[14]
KIM H S ARTHUR T S ALLRED G D, et al. Structure and compatibility of a magnesium electrolyte with a sulphur cathode[J]. Nature Communications20112(1): 427.
[15]
VINAYAN B P ZHAO-KARGER Z DIEMANT T, et al. Performance study of magnesium-sulfur battery using a graphene based sulfur composite cathode electrode and a non-nucleophilic Mg electrolyte[J]. Nanoscale20168(6): 3296-3306.
[16]
YU X MANTHIRAM A. Performance enhancement and mechanistic studies of magnesium-sulfur cells with an advanced cathode structure[J]. ACS Energy Letters20161(2): 431-437.
[17]
ZHOU X TIAN J HU J, et al. High rate magnesium-sulfur battery with improved cyclability based on metal-organic framework derivative carbon host[J]. Advanced Materials201830(7): 1704166.
[18]
GAO T NOKED M PEARSE A J, et al. Enhancing the reversibility of Mg/S battery chemistry through Li+ mediation[J]. Journal of the American Chemical Society2015137(38): 12388-12393.
[19]
SHTERENBERG I SALAMA M YOO H D, et al. Evaluation of (CF3SO22N-(TFSI) based electrolyte solutions for Mg batteries[J]. Journal of the Electrochemical Society2015162(13): A7118.
[20]
SA N, PAN B SAHA-SHAH A, et al. Role of chloride for a simple, non-grignard mg electrolyte in ether based solvents[J]. ACS Applied Materials & Interfaces20168(25): 16002.
[21]
XU H ZHU D ZHU W, et al. Rational design of high concentration electrolytes and MXene-based sulfur host materials toward high-performance magnesium sulfur batteries[J]. Chemical Engineering Journal2022428: 131031.
[22]
GAO T HOU S WANG F, et al. Reversible S0/MgS x redox chemistry in a MgTFSI2/MgCl2/DME electrolyte for rechargeable Mg/S batteries[J]. Angewandte Chemie2017129(43): 13711-13715.
[23]
MA Z KAR M XIAO C, et al. Electrochemical cycling of Mg in Mg[TFSI]2/tetraglyme electrolytes[J]. Electrochemistry Communications201778: 29-32.
[24]
YANG Y WANG W NULI Y, et al. High active magnesium trifluoromethanesulfonate-based electrolytes for magnesium-sulfur batteries[J]. ACS Applied Materials & Interfaces201911(9): 9062-9072.
[25]
WANG P KUSTER K STARKE U, et al. Performance enhancement of rechargeable magnesium-sulfur batteries based on a sulfurized poly (acrylonitrile) composite and a lithium salt[J]. Journal of Power Sources2021515: 230604.
[26]
LI R LI Y ZHANG R, et al. Voltage hysteresis of magnesium anode: taking magnesium-sulfur battery as an example[J]. Electrochimica Acta2021369: 137685.
[27]
CUI H YAN X LIU B, et al. Flower-like spherical Ni-benzimidazole derived Ni-NiO-C complexed with carbon nanotubes as electrocatalysts for lithium-sulfur battery[J]. Journal of Alloys and Compounds2023931: 167402.
[28]
WANG W YANG Y NULI Y, et al. Metal Organic Framework (MOF)-derived carbon-encapsulated cuprous sulfide cathode based on displacement reaction for hybrid Mg2+/Li+ batteries[J]. Journal of Power Sources2020445: 227325.
[29]
ZHANG S REN W NULI Y, et al. Sulfurized-pyrolyzed polyacrylonitrile cathode for magnesium-sulfur batteries containing Mg2+/Li+ hybrid electrolytes[J]. Chemical Engineering Journal2022427: 130902.
[30]
ZHANG S HUANG Y NULI Y, et al. Sodium polyacrylate as a promising aqueous binder of S@pPAN cathodes for magnesium-sulfur batteries[J]. Journal of Physical Chemistry C2020124(38): 20712-20721.
[31]
曾敏, 陈淋, 李星, 等. 基于Ti3C2T x 材料在钠离子电池中的应用进展[J]. 材料工程202351(2):1-14.
ZENG M CHEN L LI X, et al. Progress in application of Ti3C2T x materials in sodium-ion batteries[J]. Journal of Materials Engineering202351(2):1-14.
[32]
ZHAO Q WANG R ZHANG Y, et al. The design of Co3S4@MXene heterostructure as sulfur host to promote the electrochemical kinetics for reversible magnesium-sulfur batteries[J]. Journal of Magnesium and Alloys20219(1): 78-89.
[33]
KALAND H HASKJOLD F F HADLER‐JACOBSEN J, et al. Performance study of MXene/carbon nanotube composites for current collector‐ and binder‐free Mg-S batteries[J]. ChemSusChem202114(8): 1864-1873.
[34]
DU H ZHANG Z HE J, et al. A delicately designed sulfide graphdiyne compatible cathode for high-performance lithium/magnesium-sulfur batteries[J]. Small201713(44): 1702277.
[35]
XU Y ZHOU G ZHAO S, et al. Improving a Mg/S battery with YCl3 additive and magnesium polysulfide[J]. Advanced Science20196(4): 1800981.
[36]
ZHAO‐KARGER Z ZHAO X WANG D, et al. Performance improvement of magnesium sulfur batteries with modified non‐nucleophilic electrolytes[J]. Advanced Energy Materials20155(3): 1401155.
[37]
LEE B CHOI J NA S, et al. Critical role of elemental copper for enhancing conversion kinetics of sulphur cathodes in rechargeable magnesium batteries[J]. Applied Surface Science2019484: 933-940.
[38]
KRISHNA M GHOSH A MUTHURAJ D, et al. Electrocatalytic activity of polyaniline in magnesium-sulfur batteries[J]. Journal of Physical Chemistry Letters202213(5): 1337-1343.
[39]
DU A ZHANG Z QU H, et al. An efficient organic magnesium borate-based electrolyte with non-nucleophilic characteristics for magnesium-sulfur battery[J]. Energy & Environmental Science201710(12): 2616-2625.
[40]
ZHAO-KARGER Z LIU R DAI W, et al. Toward highly reversible magnesium-sulfur batteries with efficient and practical Mg[B(hfip)42 electrolyte[J]. ACS Energy Letters20183(8): 2005-2013.
[41]
VINAYAN B P EUCHNER H ZHAO-KARGER Z, et al. Insights into the electrochemical processes of rechargeable magnesium-sulfur batteries with a new cathode design[J]. Journal of Materials Chemistry A20197(44): 25490-25502.
[42]
LI Z FUHR O FICHTNER M, et al. Towards stable and efficient electrolytes for room-temperature rechargeable calcium batteries[J]. Energy & Environmental Science201912(12): 3496-3501.
[43]
HA S Y LEE Y W WOO S W, et al. Magnesium (Ⅱ) bis (trifluoromethane sulfonyl) imide-based electrolytes with wide electrochemical windows for rechargeable magnesium batteries[J]. ACS Applied Materials & Interfaces20146(6): 4063-4073.
[44]
CHENG Y SHAO Y ZHANG J G, et al. High performance batteries based on hybrid magnesium and lithium chemistry[J]. Chemical communications201450(68): 9644-9646.
[45]
SIEVERT B HACKER J BIENEN F, et al. Magnesium sulfur battery with a new magnesium powder anode[J]. ECS Transactions201777(11): 413.
[46]
SON S B GAO T HARVEY S P, et al. An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes[J]. Nature Chemistry201810(5): 532-539.
[47]
LI B MASSE R LIU C, et al. Kinetic surface control for improved magnesium-electrolyte interfaces for magnesium ion batteries[J]. Energy Storage Materials201922:96-104.
[48]
LI X GAO T HAN F, et al. Reducing Mg anode overpotential via ion conductive surface layer formation by iodine additive[J]. Advanced Energy Materials20188(7): 1701728.
[49]
ZHANG R CUI C XIAO R, et al. Interface regulation of Mg anode and redox couple conversion in cathode by copper for high-performance Mg-S battery[J].Chemical Engineering Journal2023451: 138663.
[50]
LASKOWSKI F A L STRADLEY S H QIAN M D, et al. Mg anode passivation caused by the reaction of dissolved sulfur in Mg-S batteries[J]. ACS Applied Materials & Interfaces202113(25): 29461-29470.
[51]
LI Y YANG G SUN S, et al. High utilization of composite magnesium metal anodes enabled by a magnesiophilic coating[J]. Nano Letters202222(16): 6808-6815.
[52]
WEI C TAN L ZHANG Y, et al. Highly reversible Mg metal anodes enabled by interfacial liquid metal engineering for high-energy Mg-S batteries[J]. Energy Storage Materials202248: 447-457.
[53]
WANG L WELBORN S S KUMAR H, et al. High‐rate and long cycle‐life alloy‐type magnesium‐ion battery anode enabled through (de) magnesiation‐induced near‐room‐temperature solid-liquid phase transformation[J].Advanced Energy Materials20199(45): 1902086.
[54]
LI R LIU Q ZHANG R, et al. Achieving high-energy-density magnesium/sulfur battery via a passivation-free Mg-Li alloy anode[J]. Energy Storage Materials202250: 380-386.
[55]
GONG C YAN X HE X, et al. Influence of homogenization treatment on corrosion behavior and discharge performance of the Mg-2Zn-1Ca anodes for primary Mg-air batteries[J]. Materials Chemistry and Physics2022280: 125802.
[56]
GONG C HE X FANG D, et al. Effect of second phases on discharge properties and corrosion behaviors of the Mg-Ca-Zn anodes for primary Mg-air batteries[J]. Journal of Alloys and Compounds2021861: 158493.
[57]
ER D, DETSI E KUMAR H, et al. Defective graphene and graphene allotropes as high-capacity anode materials for Mg ion batteries[J]. ACS Energy Letters20161(3): 638-645.
[58]
KIM D M JUNG S C, HA S, et al. Cointercalation of Mg2+ ions into graphite for magnesium-ion batteries[J]. Chemistry of Materials201830(10): 3199-3203.
[59]
HU X C SHI Y LANG S Y, et al. Direct insights into the electrochemical processes at anode/electrolyte interfaces in magnesium-sulfur batteries[J].Nano Energy201849: 453-459.

基金

山西省基础研究计划面上项目(202203021221157)
山西省重点研发计划项目(202102050201003)
国家自然科学基金面上项目(52071227)
山西省基础研究计划青年科学研究项目(20210302124225)
太原科技大学研究生教育创新项目(SY2023002)

评论

PDF(870 KB)

Accesses

Citation

Detail

段落导航
相关文章

/