
重型燃气轮机用新型热障涂层LaMgAl11O19与YSZ涂层抗烧结性能对比
何磊, 邓甜甜
重型燃气轮机用新型热障涂层LaMgAl11O19与YSZ涂层抗烧结性能对比
Comparison of sintering resistance property of new thermal barrier coatings LaMgAl11O19 and YSZ coatings for heavy-duty gas turbines
随着重型燃气轮机不断升级,燃气轮机透平的进气温度不断提高,传统YSZ涂层已无法满足高于1200 ℃的服役温度。通过大气等离子喷涂技术制备新型热障涂层LaMgAl11O19(LMA)和YSZ涂层,在1100 ℃和1300 ℃进行静态氧化实验,采用SEM和XRD技术对比分析了不同烧结温度和时长下的孔隙率、微观组织和相变过程。结果表明:LMA涂层在1100 ℃和1300 ℃下,孔隙率随烧结时间的延长而增大,YSZ涂层则随烧结时间延长孔隙率明显下降。LMA涂层在高温下短时间内发生相变,断口中可观察到细小的针状晶,随烧结时间的延长,结晶相长大成条状和片状结构,有利于提高涂层的抗烧结性。Rietveld精修结果表明,在1300 ℃下烧结1000 h,YSZ涂层中T′相含量从82.67%下降至27.69%,C相含量从初始1.50%增加到46.84%,M相含量从0.19%增加到15.39%。此相变过程引起体积转变,产生较大的残余应力,导致涂层脱落。
With the development of heavy-duty gas turbines, its gas inlet temperature keeps increasing, and the traditional YSZ coatings could not service above 1200 ℃. The LaMgAl11O19(LMA) and YSZ coatings are fabricated byair plasma spray method, and the static oxidation tests are carried out at 1100 ℃ and 1300 ℃. The porosity, microstructure, and phase transformation process are investigated comparatively by SEM and XRD. The results show that the porosity of LMA coatings increases with the sintering time increasing at 1100 ℃ and 1300 ℃, while the porosity of YSZ coatings decreases obviously. The amorphous phase of LMA coatings is transformed rapidly at high temperatures. The needle-like grain at LMA coating fracture is formed, and the grain growth becomes platelet-shaped grains with the sintering time increasing, which improves the sintering resistance of LMA coatings. The results of YSZ coatings Rietveld refinement show that the content of the T′ phase decreases from 82.67% to 27.69% with the sintering time increasing to 1000 h at 1300 ℃. Meanwhile, the content of the C phase rises from 1.50% to 46.84%, and the M phase increases from 0.19% to 15.39%. This phase transformation causes volume transformation, which generates large residual stress,leading to the coating falling off.
LaMgAl11O19 / YSZ / 抗烧结 / 孔隙率 / Rietveld精修
LaMgAl11O19 / YSZ / sintering resistance / porosity / Rietveld refinement
TB35
[1] |
|
[2] |
李丽芬, 孙俊彬, 王进双,等. 锆酸镧的固相合成及其热障涂层的抗热震性能研究[J]. 中国稀土学报, 2018, 36(1):75-85.
|
[3] |
|
[4] |
汪超, 周鑫, 解旭阳,等. 重型燃气轮机用 La2(Zr0.7Ce0.3)2O7/YSZ双层热障涂层热循环性能研究[J]. 热喷涂技术,2019, 11(3):14-21.
|
[5] |
陈涛, 惠宇, 胥佳颖,等. 纳米8YSZ粉的热处理对等离子喷涂涂层热震性能的影响[J]. 中国稀土学报, 2016, 34(2):189-198.
|
[6] |
|
[7] |
|
[8] |
袁佟, 邓畅光, 毛杰,等. 等离子喷涂-物理气相沉积制备7YSZ热障涂层及其热导率研究[J]. 材料工程, 2017, 45(7):1-6.
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
陈小龙. 磁铅石型稀土六铝酸盐热障涂层材料研究[D]. 北京:中国科学院大学, 2012.
|
[18] |
于海涛, 牟仁德, 谢敏,等. 热障涂层的研究现状及其制备技术[J]. 稀土, 2010, 31(5):83-88.
|
[19] |
曹学强. 热障涂层材料[M]. 北京:科学出版社, 2007.
|
[20] |
|
/
〈 |
|
〉 |