
多光束激光选区熔化研究进展
曾庆鹏, 傅广, 任治好, 彭庆国, 肖华强, 李少波, 张正文
多光束激光选区熔化研究进展
Research progress in multi-beam selective laser melting
激光选区熔化(selective laser melting,SLM)作为一种常见的增材制造(additive manufacturing,AM)技术,在多孔和薄壁等异形零件的成形领域受到广泛关注。然而,传统的单光束SLM成形因成形尺寸小、成形效率低等问题而发展缓慢。多光束激光选区熔化(multi-beam selective laser melting, MB-SLM)在单光束SLM成形的基础上,通过多光束、多振镜分区扫描并进行拼接成形,实现了成形尺寸和成形效率的大幅同步提升,有效地解决了单光束SLM成形存在的固有难题,有望成为进一步拓展金属增材制造应用领域的新兴技术。本文综述了多光束激光选区熔化在成形原理、成形设备以及工艺缺陷的形成及控制方面的研究进展,归纳了多光束激光选区熔化成形不同合金的显微组织和力学性能,重点阐述了工艺缺陷和力学性能调控的主要策略。最后对其未来发展趋势进行了展望,如应关注多光束间的时空差异特性对力学性能的影响、改变不同区域间工艺参数的一致性以减少成形件的工艺缺陷等。
As a common additive manufacturing (AM) technology, selective laser melting (SLM) is a great potential manufacturing technology for special-shaped parts,such as porous and thin-walled parts. However, the traditional single beam SLM technology develops slowly due to the problems of lesser forming size and inferior efficiency. On the basis of single-beam SLM, multi-beam selective laser melting (MB-SLM) uses multiple beams and multiple galvanometers to partition scan and perform overlap forming. It greatly improves the forming size and efficiency, perfectly solves the inherent problems of single-beam SLM,and is expected to become an emerging technology to expand the application of metal additive manufacturing. The research progress of multi-beam selective laser melting in forming principle, forming equipment, and formation and control of defects is reviewed. The microstructures and mechanical properties of different alloys manufactured by multi-beam selective laser melting are summarized. Importantly, the main strategies to control defects and mechanical properties are highlighted. Finally, the development trends are forecasted, such as the impact of temporal and spatial difference characteristics between multi-beam on mechanical properties, and the consistency change of process parameters between different regions to reduce defects of formed parts.
多光束激光选区熔化 / 增材制造 / 缺陷调控 / 显微组织 / 力学性能
multi-beam selective laser melting / additive manufacturing / defect control / microstructure / mechanical property
TB31 / TG665
[1] |
顾冬冬,张红梅,陈洪宇,等. 航空航天高性能金属材料构件激光增材制造[J]. 中国激光, 2020, 47(5): 32-55.
|
[2] |
杨永强,陈杰,宋长辉,等. 金属零件激光选区熔化技术的现状及进展[J]. 激光与光电子学进展, 2018, 55(1): 9-21.
|
[3] |
卢秉恒,李涤尘. 增材制造(3D打印)技术发展[J]. 机械制造与自动化, 2013, 42(4): 1-4.
|
[4] |
林鑫,黄卫东. 高性能金属构件的激光增材制造[J]. 中国科学:信息科学,2015, 45(9): 1111-1126.
|
[5] |
李涤尘,田小永,王永信,等. 增材制造技术的发展[J]. 电加工与模具,2012(): 20-22.
增刊1
Suppl 1
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
吴伟辉,杨永强,肖冬明,等. 激光选区熔化成型可控超轻结构化零件的孔隙生成效果[J]. 光学精密工程, 2017, 25(6): 1547-1556.
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
黄卫东,张思远,王猛,等. 拼接方式对多光束SLM成形TC4成形特性的影响[J]. 应用激光, 2019, 39(4): 544-549.
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
李鹏,申红斌,王志敏,等. 拼接策略对多光束激光选区熔化成形TA15钛合金组织及性能的影响[J]. 国防制造技术, 2021(4): 27-30.
|
[29] |
|
[30] |
|
[31] |
|
[32] |
岑伟洪,汤辉亮,张江兆,等. 提升分区搭接质量的激光选区熔化扫描策略[J]. 中国激光, 2021, 48(18): 173-183.
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
刘文鹏,刘斌,李忠华,等. 基于多激光束SLM成形Ti6Al4V合金的力学性能研究[J]. 热加工工艺, 2021, 50(18): 61-64.
|
[43] |
|
[44] |
李忠华,蒯泽宙,刘斌,等. 多激光SLM成形件表面粗糙度研究[J]. 兵器装备工程学报, 2019, 40(9): 165-168.
|
[45] |
谢寅,滕庆,沈沐宇,等. 多激光粉床熔融成形GH3536合金搭接区域组织与性能特征研究[J]. 中国激光, 2023,50(8):188-198.
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
BLT-S 600.应用于航空、航天、发动机、医疗、汽车、电子、模具、科研院所[EB/OL]. 2022.
|
[51] |
|
[52] |
RenAM 500Q.超高生产率多激光 AM 系统[EB/OL]. 2022. 42781
|
[53] |
BLT-S 1000.应用于航空、航天、发动机、石油动力、汽车[EB/OL]. 2022.
|
[54] |
|
[55] |
刘正武,侯春杰,王联凤,等.多激光束选区熔化成形技术研究[J].制造技术与机床,2018(1):56-59.
|
[56] |
王泽敏,黄文普,曾晓雁. 激光选区熔化成形装备的发展现状与趋势[J]. 精密成形工程, 2019, 11(4): 21-28.
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
[67] |
石文天,韩玉凡,刘玉德,等. 选区激光熔化TC4球化飞溅机理及其试验研究[J]. 表面技术, 2021, 50(11): 75-82.
|
[68] |
曲睿智,黄良沛,肖冬明. 选择性激光熔化过程中熔池演变与金属飞溅特性数值模拟[J]. 航空学报, 2022, 43(4): 405-424.
|
[69] |
赵金猛,卢林,王静荣,等. 激光选区熔化Ti6Al4V在介观尺度下的热力学行为与缺陷:数值模拟与实验验证[J]. 材料导报, 2021, 35(): 410-416.
增刊2
Suppl 2
|
[70] |
|
[71] |
|
[72] |
LY S,
|
[73] |
|
[74] |
宋剑锋,宋有年,王文武,等. 金属粉末选区激光熔化成形表面粗糙度预测及控制方法研究[J]. 中国激光, 2022, 49(2): 81-94.
|
[75] |
穆伟豪,陈雪辉,张雨,等. 316L不锈钢选区激光熔化表面的形貌分析与粗糙度预测[J]. 激光与光电子学进展, 2022, 59(7): 255-262.
|
[76] |
胡勇,杨小康,康文江,等. 不同粒径粉末搭配对激光选区熔化IN738合金成形件表面粗糙度及内部缺陷的影响[J]. 激光与光电子学进展, 2021, 58(1): 210-218.
|
[77] |
|
[78] |
|
[79] |
|
[80] |
|
[81] |
卞玉超,彭英博,宋凌峰,等. 基于激光重熔优化工艺的激光选区熔化316L/IN718异质异构研究[J], 中国激光,2021, 48(18): 80-91.
|
[82] |
|
[83] |
|
[84] |
|
[85] |
|
[86] |
|
[87] |
|
[88] |
|
[89] |
李保强,李忠华,刘斌,等. 选区激光熔化成形AlSi10Mg孔隙的产生与降低[J]. 应用激光, 2018, 38(5): 742-747.
|
[90] |
孟广斌,顾冬冬,李闯,等. 选区激光熔化制备块体TiC/Ti纳米复合材料的成形工艺及性能[J]. 中国激光, 2011, 38(6): 219-225.
|
[91] |
梁立业,潘雪新,王桂兰,等. 时效温度对SLM成型的AlSi7Mg微观组织与力学性能的影响[J]. 热加工工艺, 2021, 50(14): 150-154.
|
[92] |
|
[93] |
|
[94] |
雷杨,房立家,孙兵兵,等. 多激光束选区熔化成形GH4169微观组织及力学性能[J]. 焊接技术, 2020, 49(7): 27-32.
|
[95] |
|
[96] |
|
[97] |
|
[98] |
|
[99] |
|
/
〈 |
|
〉 |