多光束激光选区熔化研究进展

曾庆鹏, 傅广, 任治好, 彭庆国, 肖华强, 李少波, 张正文

PDF(11932 KB)
PDF(11932 KB)
材料工程 ›› 2025, Vol. 53 ›› Issue (3) : 1-19. DOI: 10.11868/j.issn.1001-4381.2022.000730
综述

多光束激光选区熔化研究进展

作者信息 +

Research progress in multi-beam selective laser melting

Author information +
History +

摘要

激光选区熔化(selective laser melting,SLM)作为一种常见的增材制造(additive manufacturing,AM)技术,在多孔和薄壁等异形零件的成形领域受到广泛关注。然而,传统的单光束SLM成形因成形尺寸小、成形效率低等问题而发展缓慢。多光束激光选区熔化(multi-beam selective laser melting, MB-SLM)在单光束SLM成形的基础上,通过多光束、多振镜分区扫描并进行拼接成形,实现了成形尺寸和成形效率的大幅同步提升,有效地解决了单光束SLM成形存在的固有难题,有望成为进一步拓展金属增材制造应用领域的新兴技术。本文综述了多光束激光选区熔化在成形原理、成形设备以及工艺缺陷的形成及控制方面的研究进展,归纳了多光束激光选区熔化成形不同合金的显微组织和力学性能,重点阐述了工艺缺陷和力学性能调控的主要策略。最后对其未来发展趋势进行了展望,如应关注多光束间的时空差异特性对力学性能的影响、改变不同区域间工艺参数的一致性以减少成形件的工艺缺陷等。

Abstract

As a common additive manufacturing (AM) technology, selective laser melting (SLM) is a great potential manufacturing technology for special-shaped parts,such as porous and thin-walled parts. However, the traditional single beam SLM technology develops slowly due to the problems of lesser forming size and inferior efficiency. On the basis of single-beam SLM, multi-beam selective laser melting (MB-SLM) uses multiple beams and multiple galvanometers to partition scan and perform overlap forming. It greatly improves the forming size and efficiency, perfectly solves the inherent problems of single-beam SLM,and is expected to become an emerging technology to expand the application of metal additive manufacturing. The research progress of multi-beam selective laser melting in forming principle, forming equipment, and formation and control of defects is reviewed. The microstructures and mechanical properties of different alloys manufactured by multi-beam selective laser melting are summarized. Importantly, the main strategies to control defects and mechanical properties are highlighted. Finally, the development trends are forecasted, such as the impact of temporal and spatial difference characteristics between multi-beam on mechanical properties, and the consistency change of process parameters between different regions to reduce defects of formed parts.

关键词

多光束激光选区熔化 / 增材制造 / 缺陷调控 / 显微组织 / 力学性能

Key words

multi-beam selective laser melting / additive manufacturing / defect control / microstructure / mechanical property

中图分类号

TB31 / TG665

引用本文

导出引用
曾庆鹏 , 傅广 , 任治好 , . 多光束激光选区熔化研究进展. 材料工程. 2025, 53(3): 1-19 https://doi.org/10.11868/j.issn.1001-4381.2022.000730
Qingpeng ZENG, Guang FU, Zhihao REN, et al. Research progress in multi-beam selective laser melting[J]. Journal of Materials Engineering. 2025, 53(3): 1-19 https://doi.org/10.11868/j.issn.1001-4381.2022.000730

参考文献

[1]
顾冬冬,张红梅,陈洪宇,等. 航空航天高性能金属材料构件激光增材制造[J]. 中国激光202047(5): 32-55.
GU D D ZHANG H M CHEN H Y, et al. Laser additive manufacturing of high-performance metallic aerospace components [J]. Chinese Journal of Lasers202047(5): 32-55.
[2]
杨永强,陈杰,宋长辉,等. 金属零件激光选区熔化技术的现状及进展[J]. 激光与光电子学进展201855(1): 9-21.
YANG Y Q CHEN J SONG C H, et al. Current status and progress on technology of selective laser melting of metal parts [J]. Laser Optoelectronics Progress201855(1): 9-21.
[3]
卢秉恒,李涤尘. 增材制造(3D打印)技术发展[J]. 机械制造与自动化201342(4): 1-4.
LU B H LI D C. Additive manufacturing (3D printing) technology development[J]. Machine Building & Automation201342(4): 1-4.
[4]
林鑫,黄卫东. 高性能金属构件的激光增材制造[J]. 中国科学:信息科学201545(9): 1111-1126.
LIN X HUANG W D. Laser additive manufacturing of high performance metal components[J]. Chinese Science: Information Science201545(9): 1111-1126.
[5]
李涤尘,田小永,王永信,等. 增材制造技术的发展[J]. 电加工与模具2012(): 20-22.
摘要
增刊1
LI D C TIAN X Y WANG Y X, et al. Development of additive manufacturing technology[J]. Electromachining & Mould2012(): 20-22.
Suppl 1
[6]
LIU Y YANG Y, MAI S, et al. Investigation into spatter behavior during selective laser melting of AISI 316L stainless steel powder[J]. Materials & Design201587: 797-806.
[7]
KRUTH J P LEVY G KLOCKE F. Consolidation phenomena in laser and powder-bed based layered manufacturing[J]. CIRP Annals200756(2): 730-759.
[8]
KRUTH J P FROYEN L Van VAERENBERGH J, et al. Selective laser melting of iron-based powder[J]. Journal of Materials Processing Technology2004149(1/3): 616-622.
[9]
MURR L E GAYTAN S M RAMIREZ D A, et al. Metal fabrication by additive manufacturing using laser and electron beam melting technologies[J]. Journal of Materials Science & Technology201228(1): 1-14.
[10]
SING S L AN J YEONG W Y, et al. Laser and electron-beam powder-bed additive manufacturing of metallic implants: a review on processes, materials and designs[J]. Journal of Orthopaedic Research201634(3): 369-385.
[11]
LI Z H LIU W P LIU B, et al. Difference-extent of microstructure and mechanical properties: simulating multi-laser selective melting Ti6Al4V[J]. Optics & Laser Technology2022153: 108249.
[12]
HARUN W S W KAMARIAH M S I N MUHAMAD N, et al. A review of powder additive manufacturing processes for metallic biomaterials[J]. Powder Technology2018327: 128-151.
[13]
EMELOGU A MARUFUZZAMAN M THOMPSON S M, et al. Additive manufacturing of biomedical implants: a feasibility assessment via supply-chain cost analysis[J]. Additive Manufacturing201611: 97-113.
[14]
吴伟辉,杨永强,肖冬明,等. 激光选区熔化成型可控超轻结构化零件的孔隙生成效果[J]. 光学精密工程201725(6): 1547-1556.
WU W H YANG Y Q XIAO D M, et al. Pore generation effect of selective laser melting molding of controllable ultra-light structural parts[J]. Optics and Precision Engineering201725(6): 1547-1556.
[15]
BREMEN S MEINERS W DIATLOV A. A manufacturing technology for the future[J]. Laser Technik Journal20129(2): 33-38.
[16]
LIU B KUAI Z Z LI Z H, et al. Performance consistency of AlSi10Mg alloy manufactured by simulating multi laser beam selective laser melting (SLM): microstructures and mechanical properties[J]. Materials201811(12): 2354.
[17]
LI Z H ZOU Z K BAI P, et al. Microstructure and tensile properties of AlSi10Mg alloy manufactured by multi-laser beam selective laser melting (SLM)[J]. Metals20199(12): 1337.
[18]
HEELING T ZIMMERMANN L WEGENER K. Multi-beam strategies for the optimization of the selective laser melting process[C]∥Solid Freeform Fabrication 2016: Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium. Switzerland: The University of Texas at Austin, 2016: 1428-1438.
[19]
HEELING T WEGENER K. The effect of multi-beam strategies on selective laser melting of stainless steel 316L[J]. Additive Manufacturing201822: 334-342.
[20]
ZHANG C C ZHU H H HU Z H, et al. A comparative study on single-laser and multi-laser selective laser melting AlSi10Mg: defects, microstructure and mechanical properties[J]. Materials Science and Engineering: A2019746: 416-423.
[21]
黄卫东,张思远,王猛,等. 拼接方式对多光束SLM成形TC4成形特性的影响[J]. 应用激光201939(4): 544-549.
HUANG W D ZHANG S Y WANG M, et al. Influence of splicing method on the forming characteristics of multi-beam SLM forming TC4[J]. Applied Lasers201939(4): 544-549.
[22]
SLODCZYK M ILIN A KIEDROWSKI T, et al. Spatter reduction by multi-beam illumination in laser powder-bed fusion[J]. Materials & Design2021212: 110206.
[23]
CHEN C P XIAO Z X ZHU H H, et al. Distribution and evolution of thermal stress during multi-laser powder bed fusion of Ti-6Al-4V alloy[J]. Journal of Materials Processing Technology2020284: 116726.
[24]
ZOU S XIAO H B YE F P, et al. Numerical analysis of the effect of the scan strategy on the residual stress in the multi-laser selective laser melting[J]. Results in Physics202016: 103005.
[25]
CAO L. Numerical investigation on molten pool dynamics during multi-laser array powder bed fusion process[J]. Metallurgical and Materials Transactions A202152(1): 221-227.
[26]
GERSTGRASSER M CLOOTS M STIRNIMANN J, et al. Residual stress reduction of LPBF-processed CM247LC samples via multi laser beam strategies[J]. The International Journal of Advanced Manufacturing Technology2021117(7/8): 2093-2103.
[27]
LI F Z WANG Z M ZENG X Y. Microstructures and mechanical properties of Ti6Al4V alloy fabricated by multi-laser beam selective laser melting[J]. Materials Letters2017199: 79-83.
[28]
李鹏,申红斌,王志敏,等. 拼接策略对多光束激光选区熔化成形TA15钛合金组织及性能的影响[J]. 国防制造技术2021(4): 27-30.
LI P SHEN H B WANG Z M, et al. Effect of splicing strategy on microstructure and properties of multi-beam selective laser melting forming of TA15 titanium alloy[J]. Defense Manufacturing Technology2021(4): 27-30.
[29]
TAHERI A M DEHGHANI R KARAMOOZ M R, et al. Spatter formation in selective laser melting process using multi-laser technology[J]. Materials & Design2017131: 460-469.
[30]
PROMOPPATUM P. Dual-laser powder bed fusion additive manufacturing: computational study of the effect of process strategies on thermal and residual stress formations[J]. The International Journal of Advanced Manufacturing Technology2022121(1): 1337-1351.
[31]
TENBROCK C KELLIGER T PRAETZSCH N, et al. Effect of laser-plume interaction on part quality in multi-scanner laser powder bed fusion[J]. Additive Manufacturing202138: 101810.
[32]
岑伟洪,汤辉亮,张江兆,等. 提升分区搭接质量的激光选区熔化扫描策略[J]. 中国激光202148(18): 173-183.
CEN W H TANG H L ZHANG J Z, et al. Selective laser melting scanning strategy to improve the quality of partition overlap[J]. Chinese Journal of Lasers202148(18): 173-183.
[33]
MASOOMI M THOMPSON S M SHAMSAEI N. Laser powder bed fusion of Ti-6Al-4V parts: thermal modeling and mechanical implications[J]. International Journal of Machine Tools and Manufacture2017118/119: 73-90.
[34]
MASOOMI M THOMPSON S M SHAMSAEI N. Quality part production via multi-laser additive manufacturing[J]. Manufacturing Letters201713: 15-20.
[35]
MALEKIPOUR E VALLADARES H SHIN Y, et al. Optimization of chessboard scanning strategy using genetic algorithm in multi-laser additive manufacturing process[J]. ASME International Mechanical Engineering Congress and Exposition2020.
[36]
ZHANG W TONG M HARRISON N M. Scanning strategies effect on temperature, residual stress and deformation by multi-laser beam powder bed fusion manufacturing[J]. Additive Manufacturing202036: 101507.
[37]
CHEN C YIN J ZHU H, et al. Effect of overlap rate and pattern on residual stress in selective laser melting[J]. International Journal of Machine Tools and Manufacture2019145: 103433.
[38]
EVANS R GOCKEL J. Modeling the effects of coordinated multi-beam additive manufacturing[J]. The International Journal of Advanced Manufacturing Technology2021115(4): 1075-1087.
[39]
CHEN C P XIAO Z X WANG Y L, et al. Prediction study on in-situ reduction of thermal stress using combined laser beams in laser powder bed fusion[J]. Additive Manufacturing202147: 102221.
[40]
HEELING T WEGENER K. Computational investigation of synchronized multibeam strategies for the selective laser melting process[J]. Physics Procedia201683: 899-908.
[41]
XIAO Z X CHEN C P HU Z, et al. Effect of rescanning cycles on the characteristics of selective laser melting of Ti6Al4V[J]. Optics & Laser Technology2020122: 105890.
[42]
刘文鹏,刘斌,李忠华,等. 基于多激光束SLM成形Ti6Al4V合金的力学性能研究[J]. 热加工工艺202150(18): 61-64.
LIU W P LIU B LI Z H, et al. Mechanical properties of Ti6Al4V alloy formed by multi-laser beam SLM[J]. Hot Working Technology202150(18): 61-64.
[43]
LIU B LI B Q LI Z H, et al. Numerical investigation on heat transfer of multi-laser processing during selective laser melting of AlSi10Mg[J]. Results in Physics201912: 454-459.
[44]
李忠华,蒯泽宙,刘斌,等. 多激光SLM成形件表面粗糙度研究[J]. 兵器装备工程学报201940(9): 165-168.
LI Z H KUAI Z Z LIU B, et al. Research on surface roughness of multi-beam SLM forming part[J]. Journal of Ordnance Equipment Engineering201940(9): 165-168.
[45]
谢寅,滕庆,沈沐宇,等. 多激光粉床熔融成形GH3536合金搭接区域组织与性能特征研究[J]. 中国激光202350(8):188-198.
XIE Y TENG Q SHEN M Y, et al. Study on microstructure and properties of lap area of ​​GH3536 fusion formed by multi-laser powder bed[J]. Chinese Journal of Lasers202350(8):188-198.
[46]
LI S H YANG J J WANG Z M. Multi-laser powder bed fusion of Ti-6.5Al-2Zr-Mo-V alloy powder: defect formation mechanism and microstructural evolution[J]. Powder Technology2021384: 100-111.
[47]
WEI K W LI F HUANG G, et al. Multi-laser powder bed fusion of Ti-6Al-4V alloy: defect, microstructure, and mechanical property of overlap region[J]. Materials Science and Engineering: A2021802: 140644.
[48]
WIESNER A. Multi-laser selective laser melting[C]∥8th International Conference on Photonic Technologies LANE 2014. Fürth : Bayerisches Laserzentrum GmbH, 2014: 1-3.
[49]
YIN J WANG D WEI H, et al. Dual-beam laser-matter interaction at overlap region during multi-laser powder bed fusion manufacturing[J]. Additive Manufacturing202146: 102178.
[50]
BLT-S 600.应用于航空、航天、发动机、医疗、汽车、电子、模具、科研院所[EB/OL]. 2022.
[51]
solutions SLM.认识 NXG Ⅻ 600:制造业的新时代[EB/OL]. 2022: 2022.
[52]
RenAM 500Q.超高生产率多激光 AM 系统[EB/OL]. 2022. 42781
[53]
BLT-S 1000.应用于航空、航天、发动机、石油动力、汽车[EB/OL]. 2022.
[54]
WEN S F YAN C Z WEI Q S, et al. Investigation and development of large-scale equipment and high performance materials for powder bed laser fusion additive manufacturing: this paper reports a uniform preheating technique, a multi-laser scanning technique and a technique to prepare nylon coated composite powder[J]. Virtual and Physical Prototyping20149(4): 213-223.
[55]
刘正武,侯春杰,王联凤,等.多激光束选区熔化成形技术研究[J].制造技术与机床2018(1):56-59.
LIU Z W HOU C J WANG L F, et.al. Research on multi beam selective melting forming technology [J]. Manufacturing Technology & Machine Tool2018(1):56-59.
[56]
王泽敏,黄文普,曾晓雁. 激光选区熔化成形装备的发展现状与趋势[J]. 精密成形工程201911(4): 21-28.
WANG Z M HUANG W P ZENG X Y. Development status and trend of selective laser melting forming equipment[J]. Precision Forming Engineering201911(4): 21-28.
[57]
QIU C WANG Z. Influence of laser processing strategy and remelting on surface structure and porosity development during selective laser melting of a metallic material[J]. Metallurgical and Materials Transactions A201950(9): 4423-4434.
[58]
GALY C EMILIE L G LACOSTE E, et al. Main defects observed in aluminum alloy parts produced by SLM: from causes to consequences[J]. Additive Manufacturing2018(20): 165-175.
[59]
GU D D HAGEDORN Y MEINERS W, et al. Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium[J]. Acta Materialia201260(9): 3849-3860.
[60]
OLAKANMI E O COCHRANE R F DALGARNO K W. Densification mechanism and microstructural evolution in selective laser sintering of Al-12Si powders[J]. Journal of Materials Processing Technology2011211(1): 113-121.
[61]
XIA M J GU D D YU G Q, et al. Porosity evolution and its thermodynamic mechanism of randomly packed powder-bed during selective laser melting of Inconel 718 alloy[J]. International Journal of Machine Tools and Manufacture2017116: 96-106.
[62]
KING W E BARTH H D CASTILLO V M, et al. Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing[J]. Journal of Materials Processing Technology2014214(12): 2915-2925.
[63]
ABOULKHAIR N T EVERITT N M ASHCROFT I, et al. Reducing porosity in AlSi10Mg parts processed by selective laser melting[J]. Additive Manufacturing20141: 77-86.
[64]
DAI D H GU D D. Thermal behavior and densification mechanism during selective laser melting of copper matrix composites: simulation and experiments[J]. Materials & Design201455: 482-491.
[65]
LADEWIG A SCHLICK G FISSER M, et al. Influence of the shielding gas flow on the removal of process by-products in the selective laser melting process[J]. Additive Manufacturing201610: 1-9.
[66]
TAHERI ANDANI M DEHGHANI R KARAMOOZ-RAVARI M R, et al. A study on the effect of energy input on spatter particles creation during selective laser melting process[J]. Additive Manufacturing201820: 33-43.
[67]
石文天,韩玉凡,刘玉德,等. 选区激光熔化TC4球化飞溅机理及其试验研究[J]. 表面技术202150(11): 75-82.
SHI W T HAN Y F LIU Y D, et al. Mechanism of spheroidizing and spattering in selective laser melting of TC4 and its experimental study[J]. Surface Technology202150(11): 75-82.
[68]
曲睿智,黄良沛,肖冬明. 选择性激光熔化过程中熔池演变与金属飞溅特性数值模拟[J]. 航空学报202243(4): 405-424.
QU R Z HUANG L P XIAO D M. Numerical simulation of molten pool evolution and metal spatter characteristics during selective laser melting[J]. Acta Aeronautica et Astronautica Sinica202243(4): 405-424.
[69]
赵金猛,卢林,王静荣,等. 激光选区熔化Ti6Al4V在介观尺度下的热力学行为与缺陷:数值模拟与实验验证[J]. 材料导报202135(): 410-416.
摘要
增刊2
ZHAO J M LU L WANG J R, et al. Hermodynamic behavior and defects of selective laser melting of Ti6Al4V at the mesoscopic scale: numerical simulation and experimental verification[J]. Materials Reports202135(): 410-416.
Suppl 2
[70]
VOLPP J. Spattering effects during selective laser melting[J]. Journal of Laser Applications202032(2): 22023.
[71]
MATTHEWS M J GUSS G KHAIRALLAH S A, et al. Denudation of metal powder layers in laser powder bed fusion processes[J]. Acta Materialia2016114: 33-42.
[72]
LY S, RUBENCHIK A M KHAIRALLAH S A, et al. Metal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturing[J]. Scientific Reports20177(1): 4085.
[73]
WANG D WU S FU F. Mechanisms and characteristics of spatter generation in SLM processing and its effect on the properties[J]. Materials & Design2017117: 121-130.
[74]
宋剑锋,宋有年,王文武,等. 金属粉末选区激光熔化成形表面粗糙度预测及控制方法研究[J]. 中国激光202249(2): 81-94.
SONG J F SONG Y N WANG W W, et al. Research on surface roughness prediction and control method of metal powder selective laser melting forming[J]. Chinese Journal of Lasers202249(2): 81-94.
[75]
穆伟豪,陈雪辉,张雨,等. 316L不锈钢选区激光熔化表面的形貌分析与粗糙度预测[J]. 激光与光电子学进展202259(7): 255-262.
MU W H CHEN X H ZHANG Y, et al. Morphology analysis and roughness prediction of selective laser melting surface of 316L stainless steel[J]. Laser Optoelectronics Progress202259(7): 255-262.
[76]
胡勇,杨小康,康文江,等. 不同粒径粉末搭配对激光选区熔化IN738合金成形件表面粗糙度及内部缺陷的影响[J]. 激光与光电子学进展202158(1): 210-218.
HU Y YANG X K KANG W J, et al. Effects of powder mix of different particle sizes on surface roughness and internal defects of selective laser melting IN738 alloy parts[J]. Laser Optoelectronics Progress202158(1): 210-218.
[77]
VAYSSETTE B SAINTIER N BRUGGER C, et al. Numerical modelling of surface roughness effect on the fatigue behavior of Ti-6Al-4V obtained by additive manufacturing[J]. International Journal of Fatigue2019123: 180-195.
[78]
PEGUES J ROACH M SCOTT WILLIAMSON R, et al. Surface roughness effects on the fatigue strength of additively manufactured Ti-6Al-4V[J]. International Journal of Fatigue2018116: 543-552.
[79]
KUAI Z Z LI Z H BAI P K, et al. Microstructures and mechanical properties of CoCrW alloy fabricated by simulating multibeam selective laser melting[J]. Advanced Engineering Materials202022(7): 1901356.
[80]
ZHANG W HOU W DEIKE L, et al. Using a dual-laser system to create periodic coalescence in laser powder bed fusion[J]. Acta Materialia2020201: 14-22.
[81]
卞玉超,彭英博,宋凌峰,等. 基于激光重熔优化工艺的激光选区熔化316L/IN718异质异构研究[J], 中国激光202148(18): 80-91.
BIAN Y C PENG Y B SONG L F, et al. Study on heterogeneous heterogeneity of selective laser melting 316L/IN718 based on laser remelting optimization process[J]. Chinese Journal of Lasers202148(18): 80-91.
[82]
LI C FU C H GUO Y B, et al. A multiscale modeling approach for fast prediction of part distortion in selective laser melting[J]. Journal of Materials Processing Technology2016229: 703-712.
[83]
LI Y L ZHOU K TAN P F, et al. Modeling temperature and residual stress fields in selective laser melting[J]. International Journal of Mechanical Sciences2018136: 24-35.
[84]
VRANCKEN B CAIN V KNUTSEN R, et al. Residual stress via the contour method in compact tension specimens produced via selective laser melting[J]. Scripta Materialia201487: 29-32.
[85]
YANG Y LU J LUO Z Y, et al. Accuracy and density optimization in directly fabricating customized orthodontic production by selective laser melting[J]. Rapid Prototyping Journal201218(6): 482-489.
[86]
DENG D MURAKAWA H. Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements[J]. Computational Materials Science200637(3): 269-277.
[87]
MERCELIS P KRUTH J P. Residual stresses in selective laser sintering and selective laser melting[J]. Rapid Prototyping Journal200612(5): 254-265.
[88]
OUYANG D LI N XING W, et al. 3D printing of crack-free high strength Zr-based bulk metallic glass composite by selective laser melting[J]. Intermetallics201790: 128-134.
[89]
李保强,李忠华,刘斌,等. 选区激光熔化成形AlSi10Mg孔隙的产生与降低[J]. 应用激光201838(5): 742-747.
LI B Q LI Z H LIU B, et al. Generation and reduction of pores in AlSi10Mg formed by selective laser melting[J]. Applied Lasers201838(5): 742-747.
[90]
孟广斌,顾冬冬,李闯,等. 选区激光熔化制备块体TiC/Ti纳米复合材料的成形工艺及性能[J]. 中国激光201138(6): 219-225.
MENG G B GU D D LI C, et al. Forming technology and properties of bulk TiC/Ti nanocomposites prepared by selective laser melting[J]. Chinese Journal of Lasers201138(6): 219-225.
[91]
梁立业,潘雪新,王桂兰,等. 时效温度对SLM成型的AlSi7Mg微观组织与力学性能的影响[J]. 热加工工艺202150(14): 150-154.
LIANG L Y PAN X X WANG G L, et al. Effect of aging temperature on microstructure and mechanical properties of SLM formed AlSi7Mg[J]. Hot Working Technology202150(14): 150-154.
[92]
CERRI E GHIO E BOLELLI G. Effect of the distance from build platform and post-heat treatment of AlSi10Mg alloy manufactured by single- and multi-laser selective laser melting[J]. Journal of Materials Engineering and Performance202130(7): 4981-4992.
[93]
WONG H DAWSON K RAVI G A, et al. Multi-laser powder bed fusion benchmarking-initial trials with Inconel 625[J]. The International Journal of Advanced Manufacturing Technology2019105(7/8): 2891-2906.
[94]
雷杨,房立家,孙兵兵,等. 多激光束选区熔化成形GH4169微观组织及力学性能[J]. 焊接技术202049(7): 27-32.
LEI Y FANG L J SUN B B, et al. Microstructure and mechanical properties of GH4169 formed by multi-beam selective laser melting[J]. Welding Technology202049(7): 27-32.
[95]
PEI Y T DE HOSSON J T M. Functionally graded materials produced by laser cladding[J]. Acta Materialia200048(10): 2617-2624.
[96]
GREMAUD M ALLEN D R RAPPAZ M. The development of nucleation controlled microstructures during laser treatment of AlSi alloys[J]. Acta Materialia199644(7): 2669-2681.
[97]
MCDONALD S D NOGITA K DAHLE A K. Eutectic nucleation in Al-Si alloys[J]. Acta Materialia200452(14): 4273-4280.
[98]
GU D D MEIBERS W. Microstructure characteristics and formation mechanisms of in situ WC cemented carbide based hardmetals prepared by selective laser melting[J]. Materials Science and Engineering: A2010527(29/30): 7585-7592.
[99]
SANCHEZ S HYDE C J ASHCROFT I A, et al. Multi-laser scan strategies for enhancing creep performance in LPBF[J]. Additive Manufacturing202141: 101948.

基金

国家自然科学基金项目(52065009)
贵州省科技计划项目(黔科合基础-ZK[2021]一般268)
贵州大学引进人才科研项目(贵大人基合字[2021]87)
国家重点研发计划“网络协同制造和智能工厂”重点专项(2020YFB1713300)

评论

PDF(11932 KB)

Accesses

Citation

Detail

段落导航
相关文章

/