激光沉积制造TB6钛合金热处理与各向异性研究

李长富, 钱鑫, 杨光, 任宇航, 王向明

PDF(3664 KB)
PDF(3664 KB)
材料工程 ›› 2025, Vol. 53 ›› Issue (3) : 169-177. DOI: 10.11868/j.issn.1001-4381.2022.000273
研究论文

激光沉积制造TB6钛合金热处理与各向异性研究

作者信息 +

Heat treatment and anisotropy of TB6 titanium alloy fabricated by laser deposition manufacturing

Author information +
History +

摘要

研究了不同热处理制度对激光沉积制造TB6钛合金力学性能的各向异性影响,结合光学显微镜(OM)、扫描电镜(SEM)和透射电镜(TEM)分析显微组织的演化过程,探究各向异性随热处理改变的变化趋势及影响机理。结果表明:激光沉积制造TB6钛合金组织中原始β晶粒形状与初生α相(αp相)的尺寸形貌受热梯度影响较大,两方面因素共同作用下,使沉积态试样室温拉伸性能出现各向异性,在垂直沉积方向(X向)上的抗拉强度相比沉积方向(Z向)上的高7.3%,屈服强度高5%、而伸长率则低32.4%。低温退火对显微组织的影响较小,仅塑性的各向异性有所降低;高温退火后αp相长宽比差异程度降低,室温拉伸性能的各向异性随之降低;固溶时效后析出的次生α相(αs相)使合金强化机制发生改变,且αs相无明显的择优析出生长,使得强度提高的同时其室温拉伸性能的各向异性趋于消除。

Abstract

The effects of different heat treatment processes on the anisotropy of TB6 titanium alloy fabricated by laser deposition manufacturing were investigated.The evolution of microstructure was analyzed by using optical microscope (OM), scanning electron microscope (SEM), and transmission electron microscope (TEM). The variation trend and influence mechanism of anisotropy with heat treatment were investigated. The present research shows that the original β grains and the morphology of the primary α phase (αp phase) are greatly affected by the thermal gradient. The original β grains in the microstructure of TB6 titanium alloy fabricated by laser deposition manufacturing are elongated along the deposition direction and are ellipsoidal. In addition, the relative slender αp phase parallel to the deposition direction is found. These two factors jointly lead to the anisotropy of room temperature tensile property of the as-deposited samples. The tensile strength in the vertical deposition direction (X-direction ) is 7.3% higher, the yield strength is 5% higher, and the elongation is 32.4% lower than that in the deposition direction (Z-direction). The low-temperature annealing treatment has little effect on microstructure, only the anisotropy of plasticity is decreased. After high-temperature annealing treatment, the difference in aspect ratio of αp phase is significantly reduced, leading to the anisotropy of the room temperature tensile property decreases. The strength are still higher in the X-direction, and the elongation is higher in the Z-direction. The strengthening mechanism of the solution-aging treating sample is completely changed due to the precipitation of the secondary α phase (αs phase). In addition, there is no obvious preferential growth of αs phase after heat treatment, so the anisotropy of the room temperature tensile property tends to be eliminated as the strength increases.

关键词

激光增材制造 / TB6钛合金 / 热处理 / 显微组织 / 各向异性

Key words

laser additive manufacturing / TB6 titanium alloy / heat treatment / microstructure / anisotropy

中图分类号

TG146.2+3 / TB31

引用本文

导出引用
李长富 , 钱鑫 , 杨光 , . 激光沉积制造TB6钛合金热处理与各向异性研究. 材料工程. 2025, 53(3): 169-177 https://doi.org/10.11868/j.issn.1001-4381.2022.000273
Changfu LI, Xin QIAN, Guang YANG, et al. Heat treatment and anisotropy of TB6 titanium alloy fabricated by laser deposition manufacturing[J]. Journal of Materials Engineering. 2025, 53(3): 169-177 https://doi.org/10.11868/j.issn.1001-4381.2022.000273

参考文献

[1]
中国航空材料手册编辑委员会. 中国航空材料手册:钛合金 铜合金[M]. 北京:中国标准出版社, 2001: 253-274.
Editorial Committee of China Aviation Materials Manual.China aviation materials manual: titanium alloys copper alloys [M]. Beijing: China Standard Press, 2001: 253-274.
[2]
李金山, 唐斌, 樊江昆,等. 高强亚稳β钛合金变形机制及其组织调控方法[J]. 金属学报202157(11):17.
LI J S TANG B FAN J K, et al. Deformation mechanism and microstructure control of high strength metastable β titanium alloy[J]. Acta Metallurgica Sinica202157(11):17.
[3]
姜增辉, 董济超, 孔繁雅,等. 钛合金铣削加工技术研究现状及发展[J]. 新技术新工艺2021(9): 54-58.
JIANG Z H DONG J C KONG F Y, et al. Research status and development tendency of titanium alloy milling technology[J].New Technology and New Process2021(9): 54-58.
[4]
王放. TB6钛合金切削特性研究[D]. 北京: 北方工业大学, 2018.
WANG F. Study on the characteristics of milling TB6 titanium alloy[D]. Beijing: North China University of Technology, 2018.
[5]
GONG G YE J CHI Y, et al. Research status of laser additive manufacturing for metal: a review[J]. Journal of Materials Research and Technology20215(1): 855-884.
[6]
顾冬冬, 张红梅, 陈洪宇,等. 航空航天高性能金属材料构件激光增材制造[J]. 中国激光202047(5): 1-24.
GU D D ZHANG H M CHEN H Y, et al. Laser additive manufacturing of high-performance metallic aerospace components[J]. Chinese Journal of Lasers202047(5):1-24.
[7]
于承雪. 激光混合制造TB6钛合金的组织与性能研究[D]. 济南: 山东建筑大学, 2012.
YU C X. Research on microstructures and properties of TB6 titanium alloy in laser hybrid manufactured[D]. Jinan: Shandong Jianzhu University, 2012.
[8]
杨光, 王文东, 钦兰云,等. 激光沉积TA15钛合金退火处理工艺及网篮组织变形机制[J]. 稀有金属材料与工程201746(7): 1935-1942.
YANG G WANG W D QIN L Y, et al. Annealing treatment and basket weave structure deformation mechanism of laser deposition manufactured TA15 titanium alloy[J]. Rare Metal Materials and Engineering201746(7): 1935-1942.
[9]
平永康. 连续点式锻造激光快速成形TA15合金的力学各向异性研究[D]. 秦皇岛: 燕山大学, 2019.
PING Y K. Study on the anisotropy of mechanical properties of consecutive point-mode forging and laser rapid forming TA15 titanium alloy[D]. Qinhuangdao:Yanshan University, 2019
[10]
WANG K BAO R LIU D, et al. Plastic anisotropy of laser melting deposited Ti-5Al-5Mo-5V-1Cr-1Fe titanium alloy[J]. Materials Science and Engineering: A2019746: 276-289.
[11]
ZHU Y Y TIAN X J JIA L, et al. The anisotropy of laser melting deposition additive manufacturing Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy[J]. Materials & Design201567: 538-542.
[12]
梁朝阳, 张安峰, 李丽君,等. 感应加热辅助变质剂硼细化激光熔覆沉积TC4晶粒的研究[J]. 中国激光201845(7): 47-53.
LIANG Z Y ZHANG A F LI L J, et al. Induction heating assisted modifier boron refining of TC4 grains by laser cladding deposition[J]. Chinese Journal of Lasers201845(7): 47-53.
[13]
李丽君, 王豫跃, 张安峰,等. 感应加热辅助Si细化激光熔覆沉积TC4晶粒的研究[J]. 中国激光201845(6):83-88.
LI L J WANG Y Y ZHANG A F, et al. Silicon refinement of TC4 grains by induction heating assisted laser cladding deposition[J]. Chinese Journal of Lasers. 201845(6):83-88.
[14]
BOGUCKI R MOSOR K NYKIEL M. Effect of heat treatment conditions on the morphology of α phase and mechanical properties in Ti-10V-2Fe-3Al titanium alloy [J]. Archives of Metallurgy and Materials201459(4): 1269-1273.
[15]
鹿超龙, 杨文成, 权国政,等. 固溶+时效处理对TB6钛合金组织的影响[J]. 热加工工艺202150(14): 146-149.
LU C L YANG W C QUAN G Z, et al. Effect of solution and aging treatment on microstructure of TB6 titanium alloy[J]. Hot Working Technology202150(14): 146-149.
[16]
马权, 郭爱红, 周廉. Ti1023钛合金在时效过程中的组织演化和拉伸性能[J]. 中国有色金属学报201929(6):1220-1225.
MA Q GUO A H ZHOU L. Microstructure evolution and tensile properties of Ti1023 titanium alloy during aging[J]. The Chinese Journal of Nonferrous Metals201929(6):1220-1225.
[17]
LIU A J WANG L DAI H X. Effect of heat treatment on the microstructure and dynamic behavior of Ti-10V-2Fe-3Al alloy[J]. Materials Science Forum2018910:155-160.
[18]
孟祥斌, 李金国, 王欢,等. 镍基单晶高温合金竞争生长机制的研究及其发展[J]. 特种铸造及有色合金202141(11): 1328-1333.
MENG X B LI J B WANG H, et al. Mechanism of competitive grain growth of nickel-based superalloy and its development[J]. Special Casting & Nonferrous Alloys202141(11): 1328-1333.
[19]
PANTAWANE M V HO Y H JOSHI S S, et al. Computational assessment of thermos kinetics and associated microstructural evolution in laser powder bed fusion manufacturing of Ti6Al4V Alloy[J]. Scientific Reports202010(1):75-79.
[20]
YUAN L SABAU A S STJOHN D, et al. Columnar-to-equiaxed transition in a laser scan for metal additive manufacturing[C]// MCWASP XV: International Conference on Modelling of Casting, Welding and Advanced Solidification Processes. IOP: Senior Electro-Optical Scientist, 2020861: 012007.
[21]
HAINES M PLOTKOWSKI A FREDERICK C L, et al. A sensitivity analysis of the columnar-to-equiaxed transition for Ni-based superalloys in electron beam additive manufacturing[J]. Computational Materials Science2018155:340-349.
[22]
ZHANG D QIU D GIBSON M A, et al. Additive manufacturing of ultrafine-grained high-strength titanium alloys[J]. Nature2019576(7785):91-95.
[23]
LI X P JI G CHEN Z, et al. Selective laser melting of nano-TiB2 decorated AlSi10Mg alloy with high fracture strength and ductility[J]. Acta Materialia2017129:183-193.
[24]
TODARO C J EASTON M A QIU D, et al. Grain refinement of additively manufactured stainless steel by ultrasound[J]. Additive Manufacturing202037:101632.
[25]
VILLARS P PRINCE A OKAMOTO H. Handbook of ternary alloy phase diagrams [M]. 2nd ed.Almere:ASM International, 1995.
[26]
LIU C M WANG H M TIAN X J, et al. Subtransus triplex heat treatment of laser melting deposited Ti-5Al-5Mo-5V-1Cr-1Fe near β titanium alloy[J]. Materials Science and Engineering: A2014590:30-36.
[27]
张潇, 陈立佳, 赵子博,等. 冷却方式对BT25y钛合金显微组织和拉伸性能的影响[J]. 稀有金属材料与工程201847(1): 321-325.
ZHANG X CHEN L J ZHAO Z B, et al. Influence of cooling method on microstructure and tensile properties of BT25Y titanium alloy[J]. Rare Metal Materials and Engineering201847(1): 321-325.
[28]
ZHELNINA A V KALIENKO M S ILLARIONOV A G, et al. Transformation of the structure and parameters of phases during aging of a titanium Ti-10V-2Fe-3Al alloy and their relation to strengthening[J]. Physics of Metals and Metallography2020121(12):1220-1226.

基金

国家自然科学基金(51975387)

评论

PDF(3664 KB)

Accesses

Citation

Detail

段落导航
相关文章

/