
Correlation Between the Photoluminescene Mechanism and Structure of Carbon Dots
LIU Yize, LI Pengfei, SUN Zaicheng
Correlation Between the Photoluminescene Mechanism and Structure of Carbon Dots
As a novel class of zero-dimensional carbon-based nanomaterials, carbon dots(CDs) have demonstrated broad application prospects in bioimaging, optoelectronic devices, and environmental sensing due to their tunable luminescence, low toxicity, and versatile functionality. However, the luminescence mechanisms of CDs remain a central research focus owing to diverse synthesis methods, varied raw material sources, and complex composition-structure characteristics. The elusive nature luminescence mechanism has hindered the rational design and application of CDs with superior fluorescence performance. This article systematically investigates the correlation between the structural characteristics and luminescence mechanisms of CDs, with focused analysis on the roles of five core mechanisms: quantum confinement effect, effective conjugate length, surface-edge states, molecular states, and cross-link enhanced emission effects. The comprehensive analysis aims to provide theoretical guidance for the controlled synthesis and functional applications of CDs with superior fluorescence performance.
Carbon dots / Luminescence mechanisms / Carbon-based nanomaterial / Structural composition
1 |
Hu Y., Seivert O., Tang Y., Karahan H. E., Bianco A., Angew. Chem. Int. Ed., 2024, 63(48), e202412341
|
2 |
Tao S., Feng T., Zheng C., Zhu S., Yang B., J. Phys. Chem. Lett., 2019, 10(17), 5182—5188
|
3 |
Xu X., Ray R., Gu Y., Ploehn H. J., Gearheart L., Raker K., Scrivens W. A., J. Am. Chem. Soc., 2004, 126(40), 12736—12737
|
4 |
Sun Y. P., Zhou B., Lin Y., Wang W., Fernando K. A. S., Pathak P., Meziani M. J., Harruff B. A., Wang X., Wang H., Luo P. G., Yang H., Kose M. E., Chen B., Veca L. M., Xie S. Y., J. Am. Chem. Soc., 2006, 128(24), 7756—7757
|
5 |
Shen C., Lou Q., Liu K., Dong L., Shan C., Nano Today, 2020, 35, 100954
|
6 |
Li S., Li L., Tu H., Zhang H., Silvester D. S., Banks C. E., Zou G., Hou H., Ji X., Mater. Today, 2021, 51, 188—207
|
7 |
Alafeef M., Srivastava I., Aditya T., Pan D., Small, 2024, 20(4), e2303937
|
8 |
Liu H., Zhong X., Pan Q., Zhang Y., Deng W., Zou G., Hou H., Ji X., Coord. Chem. Rev., 2024, 498, 215468
|
9 |
Hettiarachchi S. D., Graham R. M., Mintz K. J., Zhou Y., Vanni S., Peng Z., Leblanc R. M., Nanoscale, 2019, 11(13), 6192—6205
|
10 |
Jiang L., Cai H., Zhou W., Li Z., Zhang L., Bi H., Adv. Mater., 2023, 35(21), e2210776
|
11 |
Ji C., Xu W., Han Q., Zhao T., Deng J., Peng Z., Nano Energy, 2023, 114, 108623
|
12 |
Yuan T., Yuan F., Li X., Li Y., Fan L., Yang S., Chem. Sci., 2019, 10(42), 9801—9806
|
13 |
Cao L., Zan M., Chen F., Kou X., Liu Y., Wang P., Mei Q., Hou Z., Dong W., Li L., Carbon, 2022, 194, 42—51
|
14 |
Shi J., Lu C., Yan D., Ma L., Biosens. Bioelectron., 2013, 45, 58—64
|
15 |
Amjadi M., Manzoori J. L., Hallaj T., Sorouraddin M. H., Spectrochim. Acta A, 2014, 122, 715—720
|
16 |
Liu J., Li R., Yang B., ACS Cent. Sci., 2020, 6(12), 2179—2195
|
17 |
Yang S., Li Y., Chen L., Wang H., Shang L., He P., Dong H., Wang G., Ding G., Small, 2023, 19(31), e2205957
|
18 |
Song J., Kang M., Ji S., Ye S., Guo J., Nanomaterials, 2025, 15(2), 81
|
19 |
Yu J., Yong X., Tang Z., Yang B., Lu S., J. Phys. Chem. Lett., 2021, 12(32), 7671—7687
|
20 |
Tao S., Zhou C., Kang C., Zhu S., Feng T., Zhang S., Ding Z., Zheng C., Xia C., Yang B., Light⁃Sci. Appl., 2022, 11(1), 56
|
21 |
Mintz K. J., Bartoli M., Rovere M., Zhou Y., Hettiarachchi S. D., Paudyal S., Chen J., Domena J. B., Liyanage P. Y., Sampson R., Khadka D., Pandey R. R., Huang S., Chusuei C. C., Tagliaferro A., Leblanc R. M., Carbon, 2021, 173, 433—447
|
22 |
Tetsuka H., Nagoya A., Fukusumi T., Matsui T., Adv. Mater., 2016, 28(23), 4632—4638
|
23 |
Liu Y., Huang Z., Wang X., Hao Y., Yang J., Wang H., Qu S., Adv. Funct. Mater., 2024, 35(17), 2420587
|
24 |
You W., Zou W., Jiang S., Zhang J., Ge Y., Lu G., Bahnemann D. W., Pan J., Carbon Neutralization, 2024, 3(2), 245—284
|
25 |
Wang B., Waterhouse G. I. N., Yang B., Lu S., Acc. Chem. Res., 2024, 57(19), 2928—2939
|
26 |
Liu M., Chen B., Li C., Huang C., Green Chem., 2019, 21(3), 449—471
|
27 |
Xue S., Li P., Sun L., An L., Qu D., Wang X., Sun Z., Small, 2023, 19(31), e2206180
|
28 |
Jiang Y., Zhao T., Xu W., Peng Z., Carbon, 2024, 219, 118838
|
29 |
Ding H., Wei J., Zhang P., Zhou Z., Gao Q., Xiong H., Small, 2018, 14(22), 1800612
|
30 |
Wei S., Yin X., Li H., Du X., Zhang L., Yang Q., Yang R., Chemistry, 2020, 26(36), 8129—8136
|
31 |
Liu C., Wang R., Wang B., Deng Z., Jin Y., Kang Y., Chen J., Microchim. Acta, 2018, 185, 1—8
|
32 |
Kasprzyk W., Romańczyk P. P., Starzak K., Wysocka A., Waluda Ł., Świergosz T., Bashmakova N. V., Klishevich G. V., Dmytruk A. M., Klyuyev I. S., Bondar M. V., Small Struct., 2025, 6(3), 2400583
|
33 |
Tao S., Lu S., Geng Y., Zhu S., Redfern S. A. T., Song Y., Feng T., Xu W., Yang B., Angew. Chem. Int. Ed., 2018, 57(9), 2393—2398
|
34 |
Ai L., Yang Y., Wang B., Chang J., Tang Z., Yang B., Lu S., Sci. Bull., 2021, 66(8), 839—856
|
35 |
Tao K., Fan Z., Sun L., Makam P., Tian Z., Ruegsegger M., Shaham⁃Niv S., Hansford D., Aizen R., Pan Z., Galster S., Ma J., Yuan F., Si M., Qu S., Zhang M., Gazit E., Li J., Nat. Commun., 2018, 9(1), 3217
|
36 |
Bai H., Jin X., Cheng Z., Zhou H., Wang H., Yu J., Zuo J., Chen W., Adv. Compos. Hybrid. Mater., 2023, 6(2), 62
|
37 |
Sk M. A., Ananthanarayanan A., Huang L., Lim K. H., Chen P., J. Mater. Chem. C, 2014, 2(34), 6954—6960
|
38 |
Wang L., Li W., Yin L., Liu Y., Guo H., Lai J., Han Y., Li G., Li M., Zhang J., Vajtai R., Ajayan P. M., Wu M., Sci. Adv., 2020, 6(40), eabb6772
|
39 |
Li H., He X., Kang Z., Huang H., Liu Y., Liu J., Lian S., Tsang C. H., Yang X., Lee S. T., Angew. Chem. Int. Ed., 2010, 49(26), 4430—4434
|
40 |
Liu R., Wu D., Feng X., Mullen K., J. Am. Chem. Soc., 2011, 133(39), 15221—15223
|
41 |
Qu D., Zheng M., Li J., Xie Z., Sun Z., Light⁃Sci. Appl., 2015, 4(12), e364
|
42 |
Du J., Wang H., Wang L., Zhu S., Song Y., Yang B., Sun H., J. Mater. Chem. C., 2016, 4(11), 2235—2242
|
43 |
Khan S. N., Weight B. M., Gifford B. J., Tretiak S., Bishop A., J. Phys. Chem. Lett., 2022, 13(25), 5801—5807
|
44 |
Ding H., Yu S. B., Wei J. S., Xiong H. M., ACS Nano, 2016, 10(1), 484—491
|
45 |
Miao X., Qu D., Yang D., Nie B., Zhao Y., Fan H., Sun Z., Adv. Mater., 2018, 30(1), 1704740
|
46 |
Guo L., Ge J., Liu W., Niu G., Jia Q., Wang H., Wang P., Nanoscale, 2016, 8(2), 729—734
|
47 |
Bian Z., Gomez E., Gruebele M., Levine B. G., Link S., Mehmood A., Nie S., Chem. Sci., 2025, 16(10), 4195—4212
|
48 |
Soni N., Singh S., Sharma S., Batra G., Kaushik K., Rao C., Verma N. C., Mondal B., Yadav A., Nandi C. K., Chem. Sci., 2021, 12(10), 3615—3626
|
49 |
Zhu P., Tan K., Chen Q., Xiong J., Gao L., Chem. Mater., 2019, 31(13), 4732—4742
|
50 |
Li P., Xue S., Sun L., Zong X., An L., Qu D., Wang X., Sun Z., Light⁃Sci. Appl., 2022, 11(1), 298
|
51 |
Zhu S., Zhao X., Song Y., Lu S., Yang B., Nano Today, 2016, 11(2), 128—132
|
52 |
Song Y., Zhu S., Zhang S., Fu Y., Wang L., Zhao X., Yang B., J. Mater. Chem. C, 2015, 3(23), 5976—5984
|
53 |
Han X., Xia C., Wu H., Xie Y., Li R., Sui B., Yu Y., Wang B., Yang B., Angew. Chem. Int. Ed., 2025, 64(12), e202422822
|
54 |
Li P., Xue S., Sun L., Ma X., Liu W., An L., Liu Y., Qu D., Sun Z., Small, 2024, 20(29), e2310563
|
55 |
Zhang Y., Ding S., Yu J., Sui L., Song H., Hu Y., Waterhouse G. I. N., Tang Z., Lu S., Matter, 2024, 7(10), 3518—3536
|
56 |
Gao S., Zhang P., Xu L., Lian H., Xu C., Bioresource Technol., 2025, 132493
|
57 |
Han B., Hu X., Zhang X., Huang X., An M., Chen X., Zhao D., Li J., RSC Adv., 2022, 12(19), 11640—11648
|
58 |
Zhou Y., Sharma S. K., Peng Z., Leblanc R. M., Polymers, 2017, 9(2), 67
|
59 |
Li P., Sun Z., Light⁃Sci. Appl., 2022, 11(1), 81
|
60 |
He C., Xu P., Zhang X., Long W., Carbon, 2022, 186, 91—127
|
61 |
Zhu S., Wang L., Zhou N., Zhao X., Song Y., Maharjan S., Zhang J., Lu L., Wang H., Yang B., Chem. Commun., 2014, 50(89), 13845—13848
|
62 |
Tao S., Zhu S., Feng T., Zheng C., Yang B., Angew. Chem. Int. Ed., 2020, 59(25), 9826—9840
|
63 |
Vallan L., Urriolabeitia E. P., Ruiperez F., Matxain J. M., Canton⁃Vitoria R., Tagmatarchis N., Benito A. M., Maser W. K., J. Am. Chem. Soc., 2018, 140(40), 12862—12869
|
64 |
Pakhira M., Ghosh R., Rath S. P., Chatterjee D. P., Nandi A. K., Langmuir, 2019, 35(16), 5525—5533
|
65 |
Radovic L. R., Bockrath B., J. Am. Chem. Soc., 2005, 127(16), 5917—5927
|
66 |
Abraham J. E., Balachandran M., J. Fluoresc., 2022, 32(3), 887—906
|
67 |
Ru Y., Lu S.Y., Acta Polym. Sin., 2022, 53(7), 812—827
茹艺, 卢思宇. 高分子学报, 2022, 53(7), 812—827
|
68 |
Zhang Q., Wang R., Feng B., Zhong X., Ostrikov K., Nat. Commun., 2021, 12(1), 6856
|
69 |
Mohammed L. J., Omer K. M., Nanoscale Res. Lett., 2020, 15(1), 182
|
70 |
Yang Y., Kong W., Li H., Liu J., Yang M., Huang H., Liu Y., Wang Z., Wang Z., Sham T. K., Zhong J., Wang C., Liu Z., Lee S. T., Kang Z., ACS Appl. Mater. Interfaces, 2015, 7(49), 27324—27330
|
/
〈 |
|
〉 |