
Red-emissive Mitochondria-targeting Iron-doped Carbon Dots for Tumor Therapy via Peroxidase-mimicking Activity-induced Ferroptosis
XUE Xiaokuang, LI Jian, LIANG Huanyi, WANG Yiying, GE Jiechao
Red-emissive Mitochondria-targeting Iron-doped Carbon Dots for Tumor Therapy via Peroxidase-mimicking Activity-induced Ferroptosis
In this work, iron-doped carbon dots(Fe-CDs) with strong peroxidase-mimicking activity were synthesized for tumor-specific therapy. Their intrinsic red fluorescence enabled high-contrast cellular imaging, revealing preferential mitochondrial accumulation. In the acidic and hydrogen peroxide(H₂O₂)-rich tumor microenvironment, Fe-CDs catalyzed hydroxyl radical(•OH) generation, inducing oxidative stress and lipid peroxidation, ultimately triggering ferroptosis. In vitro and in vivo studies demonstrated potent tumor inhibition. Furthermore, Fe-CDs exhibited excellent biocompatibility with no significant systemic toxicity. By integrating fluorescence imaging and catalytic therapy, this study presents a promising nanoplatform for tumor treatment and ferroptosis research.
Carbon dots / Nanozyme / Mitochondria-targeting / Ferroptosis / Tumor therapy
O636
1 |
Gao L., Zhuang J., Nie L., Zhang J., Zhang Y., Gu N., Wang T., Feng J., Yang D., Perrett S., Yan X., Nature Nanotechnology, 2007, 2(9), 577—583
|
2 |
Gao L., Wei H., Dong S., Yan X., Advanced Materials, 2024, 36(10), 2305249
|
3 |
Gao S., Lin H., Zhang H., Yao H., Chen Y., Shi J., Advanced Science, 2019, 6(3), 1801733
|
4 |
Yang B., Shi J., Journal of the American Chemical Society, 2020, 142(52), 21775—21785
|
5 |
Wang M., Huang G., You Z., Jia R., Zhong Y., Bai F., Chem. Res. Chinese Universities, 2023, 39(4), 612—623
|
6 |
Wang W., Luo Q., Li J., Li L., Li Y., Huo X., Du X., Li Z., Wang N., Advanced Functional Materials, 2022, 32(36), 2205461
|
7 |
Liu B., Liu J., Nano Research, 2017, 10(4), 1125—1148
|
8 |
Huang L., Chen J., Gan L., Wang J., Dong S., Science Advances, 2019, 5(5), eaav5490
|
9 |
Cao M., Xing X., Shen X., Ouyang J., Na N., Chem. Res. Chinese Universities, 2024, 40(2), 202—212
|
10 |
Huo M., Wang L., Wang Y., Chen Y., Shi J., ACS Nano, 2019, 13(2), 2643—2653
|
11 |
Fan K., Xi J., Fan L., Wang P., Zhu C., Tang Y., Xu X., Liang M., Jiang B., Yan X., Gao L., Nature Communications, 2018, 9(1), 1440
|
12 |
Otasevic V., Vucetic M., Grigorov I., Martinovic V., Stancic A., Oxidative Medicine and Cellular Longevity, 2021, 2021(1), 5537330
|
13 |
Xie Y., Hou W., Song X., Yu Y., Huang J., Sun X., Kang R., Tang D., Cell Death & Differentiation, 2016, 23(3), 369—379
|
14 |
Dixon S. J., Lemberg K. M., Lamprecht M. R., Skouta R., Zaitsev E. M., Gleason C. E., Patel D. N., Bauer A. J., Cantley A. M., Yang W. S., Morrison B., Stockwell B. R., Cell, 2012, 149(5), 1060—1072
|
15 |
Wang H., Lin D., Yu Q., Li Z., Lenahan C., Dong Y., Wei Q., Shao A., Frontiers in Cell and Developmental Biology, 2021, 9, 629150
|
16 |
Chen X., Comish P. B., Tang D., Kang R., Frontiers in Cell and Developmental Biology, 2021, 9, 637162
|
17 |
Wu A., Han M., Ding H., Rao H., Lu Z., Sun M., Wang Y., Chen Y., Zhang Y., Wang X., Chen D., Chemical Engineering Journal, 2023, 474, 145920
|
18 |
Ragazzon G., Cadranel A., Ushakova E. V., Wang Y., Guldi D. M., Rogach A. L., Kotov N. A., Prato M., Chem, 2021, 7(3), 606—628
|
19 |
Shi Y., Xu H., Yuan T., Meng T., Wu H., Chang J., Wang H., Song X., Li Y., Li X., Zhang Y., Xie W., Fan L., Aggregate, 2022, 3(3), e108
|
20 |
Wang B., Lu S., Matter, 2022, 5(1), 110—149
|
21 |
Hussain M. M., Khan W. U., Ahmed F., Wei Y., Xiong H., Chemical Engineering Journal, 2023, 465, 143010
|
22 |
Li J., Yang S., Deng Y., Chai P., Yang Y., He X., Xie X., Kang Z., Ding G., Zhou H., Fan X., Advanced Functional Materials, 2018, 28(30), 1870206
|
23 |
Xia C., Zhu S., Feng T., Yang M., Yang B., Advanced Science, 2019, 6(23), 1901316
|
24 |
Nan F., Xue X., Li J., Liang K., Wang J., Yu W. W., Ge J., Wang P., Science China Materials, 2024, 67(11), 3742—3752
|
25 |
Wang X., Lu Y., Hua K., Yang D., Yang Y., Analytical and Bioanalytical Chemistry, 2021, 413(5), 1373—1382
|
26 |
Yang M., Li H., Liu X., Huang L., Zhang B., Liu K., Xie W., Cui J., Li D., Lu L., Sun H., Yang B., Journal of Nanobiotechnology, 2023, 21(1), 431
|
27 |
Deng Z., Qian Y., Yu Y., Liu G., Hu J., Zhang G., Liu S., Journal of the American Chemical Society, 2016, 138(33), 10452—10466
|
28 |
Nan F., Jia Q., Xue X., Wang S., Liu W., Wang J., Ge J., Wang P., Biomaterials, 2022, 284, 121495
|
29 |
Lu S., Sui L., Liu J., Zhu S., Chen A., Jin M., Yang B., Advanced Materials, 2017, 29(15), 1603443
|
30 |
Li J., Wang J., Liang K., Xue X., Chen T., Gao Z., Ren H., Gao L., Ge J., Chemical Engineering Journal, 2024, 500, 157033
|
31 |
Yang Y., Xu J., Zhou R., Qin Z., Liao C., Shi S., Chen Y., Guo Y., Zhang S., Carbon, 2024, 219, 118831
|
32 |
Xie M., Li F., Li Y., Qian K., Liang Y., Lei B., Liu Y., Cui J., Xiao Y., Chemical Engineering Journal, 2025, 506, 159956
|
33 |
Jiang B., Duan D., Gao L., Zhou M., Fan K., Tang Y., Xi J., Bi Y., Tong Z., Gao G. F., Xie N., Tang A., Nie G., Liang M., Yan X., Nature Protocols, 2018, 13(7), 1506—1520
|
34 |
Huo M., Wang L., Chen Y., Shi J., Nature Communications, 2017, 8(1), 357
|
/
〈 |
|
〉 |