Synthesis, Fluorescence Mechanism and Patterning of Green-emissive Carbon Dots

YANG Chunyuan, CHEN Hao, ZHANG Pan, LI Fucheng, YUAN Weixiong, GUO Jiazhuang, WANG Caifeng, CHEN Su

PDF(2018 KB)
PDF(2018 KB)
Chem J Chin Univ ›› 2025, Vol. 46 ›› Issue (6) : 130-138. DOI: 10.7503/cjcu20250093
Article

Synthesis, Fluorescence Mechanism and Patterning of Green-emissive Carbon Dots

Author information +
History +

Abstract

In this study, green-emissive carbon dots(G-CDs1) were prepared using salicylic acid and ethylenediamine as precursors through a hydrothermal method, followed by purification via dialysis and column chromatography. G-CDs1 exhibited an emission wavelength of 518 nm and a photoluminescence quantum yield(PLQY) of 22.3%. Structural characterization revealed that G-CDs1 possess a graphitic carbon core and abundant surface functional groups(—OH, —COOH, —NH2). Comparative experiments were designed: first, blue-emissive carbon cores were obtained by hydrothermally treating salicylic acid alone; then, these cores were reacted with ethylenediamine to produce green-emissive carbon dots(G-CDs2). Comparative analysis showed that G-CDs2 and G-CDs1 shared identical fluorescence properties and structural features, revealing a “carbon core-fluorophore” synergistic emission mechanism, where green-emissive fluorophores were generated through defect passivation or surface reaction with ethylenediamine, jointly contributing to the fluorescence emission together with the carbon core. Consequently, a G-CDs1/polyvinylpyrrolidone(PVP) fluorescent ink composite was developed, enabling printed patterns with bright green fluorescence. This research contributes to the development of controllable synthesis, fluorescence mechanism, and applications of carbon dots.

Key words

Carbon dots / Green fluorescence / Salicylic acid / Fluorescence mechanism / Patterned printing

Cite this article

Download Citations
YANG Chunyuan , CHEN Hao , ZHANG Pan , et al . Synthesis, Fluorescence Mechanism and Patterning of Green-emissive Carbon Dots. Chemical Journal of Chinese Universities. 2025, 46(6): 130-138 https://doi.org/10.7503/cjcu20250093

References

1
Yu Y., Zeng Q. S., Tao S. Y., Xia C. L., Liu C. M., Liu P. Y., Yang B., Adv. Sci., 202310(12), 2207621
2
Guo J. Z., Lu Y. S., Xie A. Q., Li G., Liang Z. B., Wang C. F., Yang X. N., Chen S., Adv. Funct. Mater., 202232(20), 2110393
3
Shi M. C., Gao Q., Rao J., Lv Z. W., Chen M. X., Chen G. G., Bian J., Ren J. L., Lu B. Z., Peng F., J. Am. Chem. Soc., 2023146(2), 1294—1304
4
Shen J. L., Gu H. B., He Z., Lin W., Ind. Eng. Chem. Res., 202362(8), 3622—3634
5
Wu Y. F. S., Chen X., Wu W., Small20239(10), 2206709
6
Zhang Q., Wang R. Y., Feng B.W., Zhong X. X., Ostrikov K. K., Nat. Commun., 202112(1), 6856
7
Zhao B., Ma H., Jia H. Y., Zheng M. Y., Xu K. X., Yu R. N., Qu S. N., Tan Z. A., Angew. Chem., Int. Ed.202362(22), e202301651
8
Liu J., Liu Y., Liu N. Y., Han Y. Z., Zhang X., Huang H., Lifshitz Y., Lee S. T., Zhong J., Kang Z. H., Science2015347(6225), 970—974
9
Xu X. H., Wang L., Ling P. C., Ma T. F., Shi L., Wang H., Lu Y. C., Chem. J. Chinese Universities202445(09)136—145
徐小花, 王莉, 林鹏程, 马天锋, 石琳, 王欢, 芦永昌. 高等学校化学学报, 202445(09) 136—145
10
Zhu S. J., Meng Q. N., Wang L., Zhang J. H., Song Y. B., Jin H., Zhang K., Sun H. C., Wang H. Y., Yang B., Angew. Chem., Int. Ed.201352(14), 3953—3957
11
Yang S. W., Sun J., Li X. B., Zhou W., Wang Z. Y., He P., Ding G. Q., Xie X. M., Kang Z. H., Jiang M. H., J. Mater. Chem. A20142(23), 8660—8667
12
Guo J. Z., Li H., Ling L. T., Li G., Cheng R., Lu X., Xie A. Q., Li Q., Wang C. F., Chen S., ACS Sustainable Chem. Eng., 20208(3), 1566—1572.
13
Martindale B. C. M., Hutton G. A. M., Caputo C. A., Reisner E., J. Am. Chem. Soc., 2015137(18), 6018—6025
14
Vallan L., Urriolabeitia E. P., Ruiperez F., Matxain J. M., Canton⁃Vitoria R., Tagmatarchis N., Benito A. M., Maser W. K., J. Am. Chem. Soc., 2018140(40), 12862—12869
15
Sun Y. P., Zhou B., Lin Y., Wang W., Fernando K. A. S., Pathak P., Meziani M. J., Harruff B. A., Wang X., Wang H. F., Luo P. G., Yang H., Kose M. E., Chen B. L., Veca L. M., Xie S. Y., J. Am. Chem. Soc., 2006128(24), 7756—7757
16
Annamalai K., Annamalai A., Ravichandran R., Jeevarathinam A., Annamalai P., Valdes H., Elumalai S., New J. Chem., 202348(1), 216—227
17
Li X. J., Zheng M. D., Wang H. J., Meng Y., Wang D., Liu L. L., Zeng Q. H., Xu X. W., Zhou D., Sun H. C., J. Colloid Interface Sci., 2022609, 54—64
18
Paterson J. R., Lawrence J. R., An International Journal of Medicine200194(8), 445—448
19
Zheng L. Y., Chi Y. W., Dong Y. Q., Lin J. P., Wang B. B., J. Am. Chem. Soc., 2009131(13), 4564—4565
20
Shi Y. X., Zhang Y., Wang Z. B., Yuan T., Meng T., Li Y. C., Li X. H., Yuan F. L., Tan Z. A., Fan L. Z., Nat. Commun., 202415(1), 3043
21
Mueller M. L., Yan X., McGuire J. A., Li L. S., Nano Lett., 201010(7), 2679—2682
22
Zhu Z. J., Cheng R., Ling L.T., Li Q., Chen S., Angew. Chem., Int. Ed. 202059(8), 3099—3105
23
Guo J. Z., Zhang P., Zhu L. L., Chen H., Shen H. X., Wang C. F., Chen S., Ind. Eng. Chem. Res., 202463(20), 9050—9057
24
Han X., Xia C. L., Wu H., Xie Y. D., Li R., Sui B. W., Yu Y., Wang B., Yang B., Angew. Chem., Int. Ed.202564, e202422822
25
Yuan T., Yuan F. L., Sui L. Z., Zhang Y., Li Y. C., Li X. H., Tan Z. A., Fan L. Z., Angew. Chem., Int. Ed.202362(20), e202218568
26
Zhang B. H., Wang B. Z., Ushakova E. V., He B. C., Xing G. C., Tang Z. K., Rogach A. L., Qu S. N., Small202219(31), 2204158
27
Xiao L., Wang Y., Huang Y., Wong T., Sun H. D., Nanoscale20179(34), 12637—12646
28
Li P. F., Xue S. S., Sun L., Zong X. P., An L., Qu D., Wang X. Y., Sun Z. C., Light: Sci. Appl., 202211(1), 298
29
Wang B. Y., Lu S. Y., Mater., 20225(1), 110—149
30
Song Y. B., Zhu S. J., Zhang S. T., Fu Y., Wang L., Zhao X. H., Yang B., J. Mater. Chem. C20153(23), 5976—5984
31
Kasprzyk W., Swiergosz T., Bednarz S., Walas K., Bashmakova N. V., Bogdal D., Nanoscale201810(29), 13889—13894
32
Essner J. B., Kist J. A., Polo⁃Parada L., Baker G. A., Chem. Mater., 201830(6), 1878—1887
33
Arul V., Edison T. N., Lee Y. R., Sethuraman M. G., J. Photochem. Photobiol., B2017168, 142—148
34
Yuan F. L., Yuan T., Sui L. Z., Wang Z. B., Xi Z. F., Li Y. C., Li X. H., Fan L. Z., Tan Z. A., Chen A. M., Jin M. X., Yang S. H., Nat. Commun., 20189(1), 2249
35
Miao X., Qu D., Yang D. X., Nie B., Zhao Y. K., Fan H. Y., Sun Z. C., Adv Mater., 201830(1), 1704740
36
Ding H., Wei J. S., Zhang P., Zhou Z. Y., Gao Q. Y., Xiong H. M., Small201814(22), 1800612
37
Wang B. Y., Yu J. K., Sui L. Z., Zhu S. J., Tang Z. Y., Yang B., Lu S. Y., Adv. Sci., 20208(1), 2001453
38
Baker S. N., Baker G. A., Angew. Chem., Int. Ed.201049(38), 6726—6744
39
Sun H. Z., Yang G. D., Yang B., Chem. J. Chinese Universities202142(02)349—365
孙海珠, 杨国夺, 杨柏. 高等学校化学学报, 202142(02) 349—365
40
Chen B. B., Liu M. L., Li C. M., Huang C. Z., Adv. Colloid Interface Sci., 2019270: 165—190
41
Dong T., Zhao J., Li G., Li F. C., Li Q., Chen S., ACS Appl. Mater. Interfaces202113(33), 39748—39754

Funding

the National Key Research and Development Program of China(2022YFC2104600)
the Postdoctoral Fellowship Program of CPSF, China(GZC20231112)
the Priority Academic Program Development of Jiangsu Higher Education Institutions, China(PAPD)

Comments

PDF(2018 KB)

Accesses

Citation

Detail

Sections
Recommended

/