Preparation and Applications of CO2-Derived Red-emissive Carbon Dots with a High Quantum Yield

GUO Dan, HUANG Genghong, BAI Huijie, WANG Yaling, CAO Guangqun, LIU Bin, HU Shengliang

PDF(1499 KB)
PDF(1499 KB)
Chem J Chin Univ ›› 2025, Vol. 46 ›› Issue (6) : 115-121. DOI: 10.7503/cjcu20250091
Article

Preparation and Applications of CO2-Derived Red-emissive Carbon Dots with a High Quantum Yield

Author information +
History +

Abstract

A five-membered cyclic carbonate compound, tris(hydroxymethyl)propyl pentacyclic carbonate(TPTE), was synthesized using CO2 and trihydroxymethylpropane triglycidyl ether as starting materials via cycloaddition reaction. Subsequently, red-emissive carbon dots(R-CDs) with a quantum yield of 38% were prepared through a solvothermal method using TPTE and o-phenylenediamine as precursors and ethanol as the solvent. Structural characterization revealed that the obtained R-CDs exhibited an average particle size of 9.41 nm, with a highly graphitized carbon core and surface-rich hydroxyl and amino functional groups. Optical performance testing demonstrated that the R-CDs in ethanol solution displayed distinct excitation-independent characteristics, showing three-fingered emission peaks at 599, 648 and 702 nm under excitation at 535 nm, accompanied by a fluorescence lifetime of 6.46 ns. Theoretical calculations and spectroscopic analyses confirmed that these luminescent properties originated from extended π-conjugated systems within the carbon core inducing(ππ *) transitions. Notably, when combined with polyvinylpyrrolidone(PVP), the ultraviolet-visible absorption and fluorescence emission characteristics of R-CDs remained essentially unchanged, indicating negligible electronic interactions between PVP matrices and R-CDs. Leveraging their excellent optical properties, R-CDs/PVP composites were employed as phosphors integrated with a 360 nm ultraviolet LED chip to fabricate red-emitting devices. The prepared LED exhibited CIE chromaticity coordinates of (0.42, 0.21), precisely falling within the red light region with high monochromaticity. Significantly, this research achieved efficient indirect fixation of CO2 by converting it into functionalized cyclic carbonate precursors, providing an innovative approach for greenhouse gas valorization. This integrated strategy combining high-quantum-yield fluorescent material development with carbon reduction technology holds substantial application potential in optoelectronic devices and green chemistry.

Key words

Carbon dots / Carbon dioxide / Red-emissive / Light-emitting diodes

Cite this article

Download Citations
GUO Dan , HUANG Genghong , BAI Huijie , et al . Preparation and Applications of CO2-Derived Red-emissive Carbon Dots with a High Quantum Yield. Chemical Journal of Chinese Universities. 2025, 46(6): 115-121 https://doi.org/10.7503/cjcu20250091

References

1
Xu X. Y., Ray R., Gu Y. L., Ploehn H. J., Gearheart L., Raker K., Scrivens W. A., J. Am. Chem. Soc.2004126(40), 12736—12737
2
Yang X., Li X., Wang B. Y., Ai L., Li G. P., Yang B., Lu S. Y., Chin. Chem. Lett. 202233(2), 613—625
3
Zhang L. Y., Wang W., Jin P., Sun Z. G., Zhan Y., Jiang B. B., Compos. Commun.202553, 102172
4
Liu Y., Wang B. Y., Li Y. X., Li W. D., Lu S. Y., Chin. Chem. Lett.202536(2), 110426
5
Wang B. Y., Waterhouse G. I. N. , Yang B., Lu S. Y., Acc. Chem. Res.202457(19), 2928—2939
6
Zhang Y. Q., Lu S. Y., Chem202410(1), 134—171
7
Zhou Z. J., Song J. B., Nie L. M., Chen X. Y., Chem. Soc. Rev. 201645(23), 6597—6626
8
Wang Y. F., Wang K., Han Z. X., Yin Z. M., Zhou C. J., Du F. L., Zhou S. Y., Chen P., Xie Z., J. Mater. Chem. C20175(37), 9629—9637
9
Wang F. H., Wang K. X., Guan R. F., Zhang H., J. Colloid Interface Sci.2025691, 137416
10
Han Y., Liccardo L., Moretti E., Zhao H. G., Vomiero A., J. Mater. Chem. C202210(33), 11827—11847
11
Ding H., Ji Y., Wei J. S., Gao Q. Y., Zhou Z. Y., Xiong H. M., J. Mater. Chem. B20175(26), 5272—5277
12
Cao J. B., Chen R., Wang L. F., Xing H. M., Hu H. W., Yang X. D., Gu C. J., Tang S. Y., Chen D., Chem. Eng. J.2024491, 152121
13
Lukprang T., Preechaburana P., Amloy S., Radiat. Phys. Chem.2024223, 111941
14
Yong Z. H., Sun W. J., Kang S. W., Zhu X. Y., Wang M., Kang C. R., Ding M., Acta Photonica Sin.202453(7), 0753312⁃10
雍哲浩, 孙文洁, 康守旺, 朱欣悦, 王敏, 康聪瑞, 丁镠. 光子学报, 202453(7), 127—136
15
Wang F. H., Dong X. Z., Zuo Y. J., Xie Z., Guan R. F., Mater. Today Phys.202441, 101332
16
Lu H. Z., Xu S. F., Liu J. Q., ACS Sens.20194(7), 1917—1924
17
Wang Y. H., Xie Z. M., Wang X. H., Peng X., Zheng J. P., J. Nanobiotechnol., 202119(1), 260
18
Zhang X. H., Wei R. J., Zhang Y. Y., Du B. Y., Fan Z. Q., Macromolecules201548(3), 536—544
19
Liu B., Chu B., Wang Y. L., Hu L. F., Hu S. L., Zhang X. H., Green Chem., 202123(1), 422—429
20
Nakamuta Y., Toh S., Am. Mineral.201398(4), 574—581
21
Erdal N. B., Adolfsson K. H., Pettersson T., Hakkarainen M., ACS Sustain. Chem. Eng. 20186(1), 1246—1255
22
Lee T., Min S. H., Gu M., Jung Y. K., Lee W., Lee J. U., Seong D. G., Kim B. S., Chem. Mater.201527(11), 3785—3796
23
Branca C., D’Angelo G., Crupi C., Khouzami K., Rifici S., Ruello G., Wanderlingh U., Polymer201699, 614—622
24
Nandiyanto A. B. D., Oktiani R., Ragadhita R., Indones. J. Sci. Technol.20194(1), 97—118
25
Annamalai K., Annamalai A., Ravichandran R., Jeevarathinam A., Annamalai P., Valdes H., Elumalai S., New J. Chem.202348(1), 216—227
26
Feng M. N., Zhou M. J., Zhang W. J., Shi G., He Y. J., Qiao X. G., Pang X. C., Polym. Chem.202415(38), 3916—3924
27
Yu Y. Z., Li W., Huang Y. X., Yang H. X., Lv C. Y., Yan H. X., Lin D., Jiao S. C., Hou L. L., Wu Z. L., Small202420(29), 2309577
28
Li Y. Q., Wan S. J., Liang W. C., Cheng B., Wang W., Xiang Y., Yu J. G., Cao S. W., Small202420(31), 2312104
29
Yang G. C., Wu C. L., Luo X. J., Liu X. Y., Gao Y., Wu P., Cao C. X., Saavedra S. S., J. Phys. Chem. C2018122(11), 6483—6492
30
Yang X., Sui L. Z., Wang B. Y., Zhang Y. Q., Tang Z. Y., Yang B., Lu S. Y., Sci. China Chem., 202164(9), 1547—1553
31
Cheng Z. Y., Wu S. G., Adv. Sustain. Syst.20259(2), 2400663
32
Vadia F. Y., Jha S., Mehta V. N., Park T. J., Malek N. I., Kailasa S. K., J. Photoch. Photobio. A2025458, 115948
33
Nelson D. J., Vasimalai N., John S. A., Sethuraman M. G., J. Fluoresc.202435(2), 1139—1150
34
Cai W., Zhang T., Xu M., Zhang M. R., Guo Y. J., Zhang L. P., Street J., Ong W. J., Xu Q., J. Mater. Chem. C20197(8), 2212—2218

Funding

the National Natural Science Foundation of China(52302051)
the Foundational Research Project of Shanxi Province, China(202303021221115)
the Defense Industrial Technology Development Program, China(JCKY2023408C012)
the Graduate Innovation Project of Shanxi Province, China(2024SJ295)
the Graduate Science and Technology Project of North University of China(20242069)

Comments

PDF(1499 KB)

Accesses

Citation

Detail

Sections
Recommended

/