
Microwave-assisted Synthesis of Water-soluble Red-emitting Carbon Dots Derived from Spinach Powder and Its Pb²⁺ Fluorescence Detection Application
JIANG Tingjie, CAO Jueran, YAO Shengfeng, SONG Jian, LI Na, CHEN Yongying, LI Wei, ZHANG Haoran, LEI Bingfu
Microwave-assisted Synthesis of Water-soluble Red-emitting Carbon Dots Derived from Spinach Powder and Its Pb²⁺ Fluorescence Detection Application
In this study, water-soluble red carbon dots(R-CDs) were successfully synthesized via a microwave- assisted method using spinach powder as the carbon precursor. The optical properties, structural characteristics, and fluorescence regulation mechanisms of R-CDs were investigated. The results demonstrated that R-CDs exhibit uniform particle size distribution(3.62 nm), long-wavelength red light emission(648 nm), and a narrow full width at half maxima(FWHM)(30 nm). The observed fluorescence redshift is attributed to the synergistic interaction between hydroxyl groups and graphitic-nitrogen. A fluorescent probe based on R-CDs was developed for highly selective detection of Pb²⁺ ions, with a linear response range of 0—40 nmol/L and a detection limit of 4.2 nmol/L (R²=0.990). Further studies revealed that the interaction between Pb²⁺ and R-CDs is primarily governed by a dynamic quenching mechanism. This work provides a novel and environmentally friendly approach for the synthesis of red carbon dots and their application in heavy metal ion sensing.
Carbon dot / Red fluorescence / Lead ion / Fluorescent probe
1 |
Mostafa M. S., Bakr A. S. A., El Naggar A. M. A., Sultan E. S. A., J. Colloid Interface Sci., 2016, 461, 261—272
|
2 |
Huang L. S., Lin K. C., Spectrochimica. Acta B, 2001, 56(1), 123—128
|
3 |
Ebrahimi⁃Najafabadi H., Pasdaran A., Rezaei Bezenjani R., Bozorgzadeh E., Food Chem., 2019, 289, 26—32
|
4 |
Chen J. Y., Liu W. R., Li Y. J., Zou X. K., Li W., Liang J. R., Zhang H. R., Liu Y. L., Zhang X. J., Hu C. F., Lei B. F., Chem. Eng. J., 2022, 428, 131168
|
5 |
Li W., Wu S. S., Zhang H. R., Zhang X. J., Zhuang J. L., Hu C. F., Liu Y. L., Lei B. F., Ma L., Wang X. J., Adv. Funct. Mater., 2018, 28(44), 1804004
|
6 |
Li Z. X., Li H. X., Shi C. X., Yu M. M., Wei L. H., Ni Z. H., Spectrochimica. Acta A, 2016, 159, 249—253
|
7 |
Nißler R., Müller A. T., Dohrman F., Kurth L., Li H., Cosio E. G., Flavel B. S., Giraldo J. P., Mithöfer A., Kruss S., Angew. Chem. Int. Ed., 2022, 61(2), e202108373
|
8 |
Chen W. B., Li W., Zhang X. J., Ma C. G., Xia Z. G., Lei B. F., Sci. China Mater., 2022, 65(10), 2802—2808
|
9 |
Zhao Y. L., Jiang X., Huang K., Xiong X. L., Yang Q., Food Chem., 2025, 463, 141280
|
10 |
Li Y. D., Xu X. K., Li W., Hu C. F., Zhuang J. L., Zhang X. J., Lei B. F., Liu Y. L., Chin. J. Lumin., 2021, 42(8), 1172—1181
李亚东, 许晓凯, 李唯, 胡超凡, 庄健乐, 张学杰, 雷炳富, 刘应亮. 发光学报, 2021, 42(8), 1172—1181
|
11 |
Joseph J., Anappara A. A., ChemPhysChem, 2017, 18(3), 292—298
|
12 |
Xu H. H., Yan L. H., Nguyen V., Yu Y., Xu Y. M., Appl. Surf. Sci., 2017, 414, 238—243
|
13 |
Xu H., An Z. H., Zhang H. R., Li W., Yang X., Kang Y. Y., Su W., Zheng M. T., Lei B. F., Mater. Res. Bull., 2024, 170, 112590
|
14 |
Xu X. H., Wang L., Lin P. C., Ma T. F., Shi L., Wang H., Lu Y. C., Chem. J. Chinese Universities, 2024, 45(9), 20240251
徐小花, 王莉, 林鹏程, 马天锋, 石琳, 王欢, 芦永昌. 高等学校化学学报, 2024, 45(9), 20240251
|
15 |
Li L. L., Ji J., Fei R., Wang C. Z., Lu Q., Zhang J. R., Jiang L. P., Zhu J. J., Adv. Funct. Mater., 2012, 22(14), 2971—2979
|
16 |
Liu H. X., Zhong X., Pan Q., Zhang Y., Deng W. T., Zou G. Q., Hou H. S., Ji X. B., Coordin. Chem. Rev., 2024, 498, 215468
|
17 |
Fang M. Y., Wang B. Y., Qu X. L., Li S. R., Huang J. S., Li J. N., Lu S. Y., Zhou N., Chinese Chem. Lett., 2024, 35(1), 108423
|
18 |
Liu J. J., Geng Y. J., Li D. W., Yao H., Huo Z. P., Li Y. F., Zhang K., Zhu S. J., Wei H. T., Xu W. Q., Jiang J. L., Yang B., Adv. Mater., 2020, 32(17), 1906641
|
19 |
Liu J., Kong T. Y., Xiong H. M., Adv. Mater., 2022, 34(16), 2200152
|
20 |
Li S. H., He Y. X., Du Y. Q., Wei Z. P., Li Y., Cheng Q., Chin. J. Lumin., 2024, 45(9), 1478—1487
李胜慧, 何雨萱, 杜友全, 魏智鹏, 李玉, 程倩. 发光学报, 2024, 45(9), 1478—1487
|
21 |
Lin J. J., Huang W. Y., Zhang H. R., Zhang X. J., Liu Y. L., Li W., Lei B. F., J. Mater. Chem. C, 2024, 12(15), 5480—5487
|
22 |
Zhang Q., Li X. F., Xu Y. Z., Xu Z. X., Xu L. H., J. Hazard. Mater., 2025, 490, 137845
|
23 |
Tang L., Ai L., Song Z. Q., Sui L. Z., Yu J. K., Yang X., Song H. Q., Zhang B. W., Hu Y. S., Zhang Y. Q., Tian Y. X., Lu S. Y., Adv. Funct. Mater., 2023, 33(34), 2303363
|
24 |
Zhong W. L., Yang J. Y., Sci. Total Environ., 2024, 957, 177473
|
25 |
Li S., Li L., Tu H. Y., Zhang H., Silvester D. S., Banks C. E., Zou G. Q., Hou H. S., Ji X. B., Mater. Today, 2021, 51, 188—207
|
26 |
Kong Y. L., Cheng Q., He Y., Ge Y. L., Zhou J. G., Song G. W., Food Chem., 2020, 312, 126089
|
27 |
Li S. H., Su W., Wu H., Yuan T., Yuan C., Liu J., Deng G., Gao X. C., Chen Z. M., Bao Y. M., Yuan F. L., Zhou S. X., Tan H. W., Li Y. C., Li X. H., Fan L. Z., Zhu J., Chen A. T., Liu F. Y., Zhou Y., Li M., Zhai X. C., Zhou J. B., Nat. Biomed. Eng., 2020, 4(7), 704—716
|
28 |
He X., Han Y., Luo X. L., Yang W. X., Li C. H., Tang W. Z., Yue T. L., Li Z. H., Food Chem., 2020, 320, 126624
|
29 |
Fu F. M., Xu M. R., Liang Z. S., Huang S. R., Li H., Zhang H. R., Li W., Zheng M. T., Lei B. F., Chem. J. Chinese Universities, 2023, 44(2), 20220464
符芳媚, 徐梦如, 梁梓珊, 黄斯锐, 李晖, 张浩然, 李唯, 郑明涛, 雷炳富. 高等学校化学学报, 2023, 44(2), 20220464
|
30 |
Gao D., Zhang Y. S., Liu A. M., Zhu Y. D., Chen S. P., Wei D., Sun J., Guo Z. Z., Fan H. S., Chem. Eng. J., 2020, 388, 124199
|
31 |
Gu M. H., Zheng X. C., Li C., Zheng Z. X., Song G. C., Xu L., Chen L., Zhang D. Q., Nano Today, 2025, 62, 102675
|
32 |
Ding H., Yu S. B., Wei J. S., Xiong H. M., ACS Nano, 2016, 10, 484—491
|
33 |
Gao F. C., Fu Q., Ruan Y., Li C., Wang Y. D., Li H., Li J. C., Jiang Y. Y., Adv. Sci., 2025, 12(8), 2414895
|
34 |
Cao M. M., Liu Y. P., Zhu M. M., Xia J. F., Xuan T. T., Jiang D. Y., Zhou G. H., Li H. L., J. Alloy. Compd., 2021, 873, 159819
|
35 |
Wei J. Y., Lou Q., Zang J. H., Liu Z. Y., Ye Y. L., Shen C. L., Zhao W. B., Dong L., Shan C. X., Adv. Opt. Mater., 2020, 8(7), 1901938
|
36 |
Qu S. N., Zhou D., Li D., Ji W. Y., Jing P. T., Han D., Liu L., Zeng H. B., Shen D. Z., Adv. Mater., 2016, 28(18), 3516—3521
|
37 |
Dai R. Y., Chen X. P., Ouyang N., Hu Y. P., Chem. Eng. J., 2022, 431, 134172
|
38 |
Lin J. J., Huang X. M., Kou E. F., Cai W. X., Zhang H. R., Zhang X. J., Liu Y. L., Li W., Zheng Y. J., Lei B. F., Biosens. Bioelectron., 2023, 219, 114848
|
39 |
Zhai W. Y., Wang C. X., Yu P., Wang Y. X., Mao L. Q., Anal. Chem., 2014, 86(24), 12206—12213
|
40 |
Xu Y., Chen Y. H., Ding L., Chem. J. Chinese Universities, 2018, 39(7), 1420—1426
徐源, 陈艳华, 丁兰. 高等学校化学学报, 2018, 39(7), 1420—1426
|
/
〈 |
|
〉 |