
Regulating Trap Density and Energy Levels Through Boron Doping to Achieve Duration-tunable Afterglow from Carbon Dots for Dynamic Information Encryption
LI Fengshi, JIANG Kai, TONG Xinyuan, WU Yongjian, LIN Hengwei
Regulating Trap Density and Energy Levels Through Boron Doping to Achieve Duration-tunable Afterglow from Carbon Dots for Dynamic Information Encryption
A method for regulating the trap levels of matrix-free carbon dots(CDs) through boron(B) doping is demonstrated, significantly prolonging their afterglow duration. Further studies reveal that B is incorporated into the CDs in the forms of B—N and B—C bonds when the CDs are synthesized from 1,4-phenylenediboronic acid, sodium hydroxide, and melamine. The B content increases with the proportion of the B source(i.e., 1,4-phenylenediboronic acid). This process not only enhances the trap density in the CDs but also increases the energy level difference between the trap energy level and the excited triplet state. Moreover, the elevated levels of C=O and C=N bonds facilitate the generation of triplet excitons and intersystem crossing. As traps capture and store triplet excitons for gradual release, the afterglow lifetime of CDs is extended from 0.764 s to 1.224 s, effectively quadrupling the afterglow duration. Finally, based on variations in their afterglow durations, potential applications for information storage and encryption using these CDs are demonstrated.
Carbon dots / Room temperature afterglow / Traps / Element doping / Dynamic information encryption
1 |
Androutsellis⁃Theotokis S., Spinellis D., ACM Comput. Surv., 2004, 36(4), 335—371
|
2 |
Dong F. L., Chu W. G., Adv. Mater., 2019, 31(45), 1804921
|
3 |
Liu S. Y., Liu X. H., Yuan J. Y., Bao J., Research, 2021, 2021, 7897849
|
4 |
Sun Y., Le X. X., Zhou S. Y., Chen T., Adv. Mater., 2022, 34(41), 2201262
|
5 |
Ren W., Lin G. G., Clarke C., Zhou J. J., Jin D. Y., Adv. Mater., 2020, 32(18), 1901430
|
6 |
Wang H., Ji X. F., Page Z. A., Sessler J. L., Mater. Chem. Front., 2020, 4(4), 1024—1039
|
7 |
Yu X. W., Zhang H. Y., Yu J. H., Aggregate, 2021, 2(1), 20—34
|
8 |
Abdollahi A., Roghani⁃Mamaqani H., Razavi B., Salami⁃Kalajahi M., ACS Nano, 2020, 14(11), 14417—14492
|
9 |
Wang Z. S., Yuan H., Zhang Y. Z., Wang D. D., Ju J. P., Tan Y. Q., J. Mater. Sci. Technol., 2022, 101, 264—284
|
10 |
Zhang J. W., Wang Z. J., Huo X. X., Meng X., Wang Y., Suo H., Li P. L., Laser Photonics Rev., 2023, 18(3), 2300751
|
11 |
Jiang K., Wang Y. H., Li Z. J., Lin H. W., Mater. Chem. Front., 2020, 4(2), 386—399
|
12 |
Liu Y. S., Yang H. Y., Huang T., Niu L., Liu S. X., Nano Today, 2024, 56, 102257
|
13 |
Qureshi Z. A., Dabash H., Ponnamma D., Abbas M. K. G., Heliyon, 2024, 10(11), e31634
|
14 |
Sun Y. Q., Zhang X. J., Zhuang J. L., Zhang H. R., Hu C. F., Zheng M. T., Lei B. F., Liu Y. L., Carbon, 2020, 165, 306—316
|
15 |
Liu Y. P., Cheng D. K., Wang B. Z., Yang J. X., Hao Y. M., Tan J., Li Q. J., Qu S. N., Adv. Mater., 2024, 36(31), 2403775
|
16 |
Tan J., Li Q. J., Meng S., Li Y. C., Yang J., Ye Y. X., Tang Z. K., Qu S. N., Ren X. D., Adv. Mater., 2021, 33(16), 2006781
|
17 |
Wang K. T., Qu L. J., Yang C. L., Small, 2023, 19(31), e2206429
|
18 |
Yang L., Zhang Q., Ma Y. T., Li H. J., Sun S. G., Xu Y. Q., Chem. Eng. J., 2024, 490, 151679
|
19 |
Zhang L. Y., Chen X. P., Xin M. Y., Yang H. L., Guo D. Y., Hu Y. P., Small, 2024, 20(52), 2406596
|
20 |
Cao Q., Liu K. K., Liang Y. C., Song S. Y., Deng Y., Mao X., Wang Y., Zhao W. B., Lou Q., Shan C. X., Nano Lett., 2022, 22(10), 4097—4105
|
21 |
Deng Y. H., Zhao D. X., Chen X., Wang F., Song H., Shen D. Z., Chem. Commun., 2013, 49(51), 5751—5753
|
22 |
Song S. Y., Liu K. K., Mao X., Cao Q., Li N., Zhao W. B., Wang Y., Liang Y. C., Zang J. H., Li X., Lou Q., Dong L., Shan C. X., Adv. Mater., 2023, 35(21), e2212286
|
23 |
An Z., Zheng C., Tao Y., Chen R., Shi H., Chen T., Wang Z., Li H., Deng R., Liu X., Huang W., Nat. Mater., 2015, 14, 68
|
24 |
Zhao W. J., He Z. K., Lam Jacky W. Y., Peng Q., Ma H. L., Shuai Z. G., Bai G. X., Hao J. H., Tang B. Z., Chem, 2016, 1(4), 592—602
|
25 |
Shi H. X., Wu Y., Xu J. H., Shi H. F., An Z. F., Small, 2023, 19(31), e2207104
|
26 |
Zhang Y. Q., Chen L., Liu B., Yu S. P., Yang Y. Z., Liu X. G., Adv. Funct. Mater., 2024, 34(25), 2315366
|
27 |
Jiang K., Wang Y. H., Gao X. L., Cai C. Z., Lin H. W., Angew. Chem. Int. Ed., 2018, 57(21), 6216—6220
|
28 |
Shi H. X., Wu Y., Xu J. H., Zhou C. F., Xu H., Ye W. P., Yin Y. F., Wang Z. Y., Su R. F., An Z. F., Shi H. F., Chem. Eng. J., 2023, 476, 146524
|
29 |
Tao S. Y., Lu S. Y., Geng Y. J., Zhu S. J., Redfern S. A. T., Song Y. B., Feng T. L., Xu W. Q., Yang B., Angew. Chem. Int. Ed., 2018, 57(9), 2393—2398
|
30 |
Knoblauch R., Bui B., Raza A., Geddes C. D., Phys. Chem. Chem. Phys., 2018, 20(22), 15518—15527
|
31 |
Shi H. X., Niu Z. J., Wang H., Ye W. P., Xi K., Huang X., Wang H. L., Liu Y. F., Lin H. W., Shi H. F., Chem. Sci., 2022, 13(15), 4406—4412
|
32 |
Wang Z. F., Shen J., Sun J. Z., Xu B., Gao Z. H., Wang X., Yan L. T., Zhu C. F., Meng X. G., J. Mater. Chem. C, 2021, 9(14), 4847—4853
|
33 |
Xia C. L., Zhu S. J., Zhang S. T., Zeng Q. S., Tao S. Y., Tian X. Z., Li Y. F., Yang B., ACS Appl. Mater. Interfaces, 2020, 12(34), 38593—38601
|
34 |
Li J. R., Wu Y. Z., Gong X., Chem. Sci., 2023, 14(14), 3705—3729
|
35 |
Huang K., Le N., Wang J. S., Huang L., Zeng L., Xu W. C., Li Z. J., Li Y., Han G., Adv. Mater., 2022, 34(14), e2107962
|
36 |
Van den Eeckhout K., Smet P. F., Poelman D., Materials, 2010, 3(4), 2536—2566
|
37 |
Zhang J. W., Song Z. L., Cai P. Q., Wang X. F., Phys. Chem. Chem. Phys., 2023, 25(3), 1565—1587
|
38 |
Wang L. P., Tu D. T., Li C. L., Han S. Y., Wen F., Yu S. Q., Yi X. D., Xie Z., Chen X. Y., Matter, 2023, 6(12), 4261—4273
|
39 |
Yang L., Gai S. L., Ding H., Yang D., Feng L. L., Yang P. P., Adv. Opt. Mater., 2023, 11(11), 2202382
|
40 |
Han B. Y., Lei X. S., Li D., Liu Q. D., Chen Y. J., Wang J., He G. H., Adv. Opt. Mater., 2023, 11(8), 2202293
|
41 |
Fu Q., Lu K. Z., Sun S. H., Dong Z. H., Nanoscale Horiz., 2024, 9(7), 1072—1098
|
42 |
Fu Q., Sun S. H., Dong Z. H., Yue M. B., Nano Mater. Sci., 2024, 2589—9651
|
43 |
Li J. Y., Wang B. L., Zhang H. Y., Yu J. H., Small, 2019, 15(32), e1805504
|
44 |
Pal A., Sk M. P., Chattopadhyay A., Mater. Adv., 2020, 1(4), 525—553
|
45 |
Zhou J., Yang Y., Zhang C. Y., Chem. Commun., 2013, 49(77), 8605—8607
|
46 |
Liu H., Liu Z. H., Zhang J. Q., Zhi L. J., Wu M. B., New Carbon Mater., 2021, 36(3), 585—593
|
47 |
Bolton O., Lee K., Kim H. J., Lin K. Y., Kim J., Nat. Chem., 2011, 3(3), 205—210
|
48 |
Li Q. J., Zhou M., Yang Q. F., Wu Q., Shi J., Gong A. H., Yang M. Y., Chem. Mater., 2016, 28(22), 8221—8227
|
49 |
Ding H., Yu S. B., Wei J. S., Xiong H. M., ACS Nano, 2016, 10(1), 484—491
|
50 |
Liu J. C., Wang N., Yu Y., Yan Y., Zhang H. Y., Li J. Y., Yu J. H., Sci. Adv., 2017, 3(5), e1603171
|
51 |
Uoyama H., Goushi K., Shizu K., Nomura H., Adachi C., Nature, 2012, 492(7428), 234—238
|
52 |
Pan L. L., Sun S., Zhang A. D., Jiang K., Zhang L., Dong C. Q., Huang Q., Wu A. G., Lin H. W., Adv. Mater., 2015, 27(47), 7782—7787
|
53 |
Sun Y. P., Zhou B., Lin Y., Wang W., Fernando K. A. S., Pathak P., Meziani M. J., Harruff B. A., Wang X., Wang H. F., Luo P. G., Yang H., Kose M. E., Chen B., Veca L. M., Xie S. Y., J. Am. Chem. Soc., 2006, 128(24), 7756—7757
|
54 |
Shi W. Y., Yao J., Bai L. Q., Lu C., Adv. Funct. Mater., 2018, 28(52), 1804961
|
55 |
Liang Y. C., Liu K. K., Wu X. Y., Lou Q., Sui L. Z., Dong L., Yuan K. J., Shan C. X., Adv. Sci., 2021, 8(6), 2003433
|
56 |
Long X., Zhang Y. Y., Chen X., Zhong Y. Q., Wu S. U., Hao L., Opt. Mater., 2022, 132, 112829
|
/
〈 |
|
〉 |