Regulating Trap Density and Energy Levels Through Boron Doping to Achieve Duration-tunable Afterglow from Carbon Dots for Dynamic Information Encryption

LI Fengshi, JIANG Kai, TONG Xinyuan, WU Yongjian, LIN Hengwei

PDF(2165 KB)
PDF(2165 KB)
Chem J Chin Univ ›› 2025, Vol. 46 ›› Issue (6) : 184-192. DOI: 10.7503/cjcu20240545
Article

Regulating Trap Density and Energy Levels Through Boron Doping to Achieve Duration-tunable Afterglow from Carbon Dots for Dynamic Information Encryption

Author information +
History +

Abstract

A method for regulating the trap levels of matrix-free carbon dots(CDs) through boron(B) doping is demonstrated, significantly prolonging their afterglow duration. Further studies reveal that B is incorporated into the CDs in the forms of B—N and B—C bonds when the CDs are synthesized from 1,4-phenylenediboronic acid, sodium hydroxide, and melamine. The B content increases with the proportion of the B source(i.e., 1,4-phenylenediboronic acid). This process not only enhances the trap density in the CDs but also increases the energy level difference between the trap energy level and the excited triplet state. Moreover, the elevated levels of C=O and C=N bonds facilitate the generation of triplet excitons and intersystem crossing. As traps capture and store triplet excitons for gradual release, the afterglow lifetime of CDs is extended from 0.764 s to 1.224 s, effectively quadrupling the afterglow duration. Finally, based on variations in their afterglow durations, potential applications for information storage and encryption using these CDs are demonstrated.

Key words

Carbon dots / Room temperature afterglow / Traps / Element doping / Dynamic information encryption

Cite this article

Download Citations
LI Fengshi , JIANG Kai , TONG Xinyuan , et al . Regulating Trap Density and Energy Levels Through Boron Doping to Achieve Duration-tunable Afterglow from Carbon Dots for Dynamic Information Encryption. Chemical Journal of Chinese Universities. 2025, 46(6): 184-192 https://doi.org/10.7503/cjcu20240545

References

1
Androutsellis⁃Theotokis S., Spinellis D., ACM Comput. Surv.200436(4), 335—371
2
Dong F. L., Chu W. G., Adv. Mater.201931(45), 1804921
3
Liu S. Y., Liu X. H., Yuan J. Y., Bao J., Research20212021, 7897849
4
Sun Y., Le X. X., Zhou S. Y., Chen T., Adv. Mater.202234(41), 2201262
5
Ren W., Lin G. G., Clarke C., Zhou J. J., Jin D. Y., Adv. Mater.202032(18), 1901430
6
Wang H., Ji X. F., Page Z. A., Sessler J. L., Mater. Chem. Front.20204(4), 1024—1039
7
Yu X. W., Zhang H. Y., Yu J. H., Aggregate20212(1), 20—34
8
Abdollahi A., Roghani⁃Mamaqani H., Razavi B., Salami⁃Kalajahi M., ACS Nano202014(11), 14417—14492
9
Wang Z. S., Yuan H., Zhang Y. Z., Wang D. D., Ju J. P., Tan Y. Q., J. Mater. Sci. Technol.2022101, 264—284
10
Zhang J. W., Wang Z. J., Huo X. X., Meng X., Wang Y., Suo H., Li P. L., Laser Photonics Rev.202318(3), 2300751
11
Jiang K., Wang Y. H., Li Z. J., Lin H. W., Mater. Chem. Front.20204(2), 386—399
12
Liu Y. S., Yang H. Y., Huang T., Niu L., Liu S. X., Nano Today202456, 102257
13
Qureshi Z. A., Dabash H., Ponnamma D., Abbas M. K. G., Heliyon202410(11), e31634
14
Sun Y. Q., Zhang X. J., Zhuang J. L., Zhang H. R., Hu C. F., Zheng M. T., Lei B. F., Liu Y. L., Carbon2020165, 306—316
15
Liu Y. P., Cheng D. K., Wang B. Z., Yang J. X., Hao Y. M., Tan J., Li Q. J., Qu S. N., Adv. Mater.202436(31), 2403775
16
Tan J., Li Q. J., Meng S., Li Y. C., Yang J., Ye Y. X., Tang Z. K., Qu S. N., Ren X. D., Adv. Mater.202133(16), 2006781
17
Wang K. T., Qu L. J., Yang C. L., Small202319(31), e2206429
18
Yang L., Zhang Q., Ma Y. T., Li H. J., Sun S. G., Xu Y. Q., Chem. Eng. J.2024490, 151679
19
Zhang L. Y., Chen X. P., Xin M. Y., Yang H. L., Guo D. Y., Hu Y. P., Small2024, 20(52), 2406596
20
Cao Q., Liu K. K., Liang Y. C., Song S. Y., Deng Y., Mao X., Wang Y., Zhao W. B., Lou Q., Shan C. X., Nano Lett.202222(10), 4097—4105
21
Deng Y. H., Zhao D. X., Chen X., Wang F., Song H., Shen D. Z., Chem. Commun.201349(51), 5751—5753
22
Song S. Y., Liu K. K., Mao X., Cao Q., Li N., Zhao W. B., Wang Y., Liang Y. C., Zang J. H., Li X., Lou Q., Dong L., Shan C. X., Adv. Mater.202335(21), e2212286
23
An Z., Zheng C., Tao Y., Chen R., Shi H., Chen T., Wang Z., Li H., Deng R., Liu X., Huang W., Nat. Mater.201514, 68
24
Zhao W. J., He Z. K., Lam Jacky W. Y., Peng Q., Ma H. L., Shuai Z. G., Bai G. X., Hao J. H., Tang B. Z., Chem20161(4), 592—602
25
Shi H. X., Wu Y., Xu J. H., Shi H. F., An Z. F., Small202319(31), e2207104
26
Zhang Y. Q., Chen L., Liu B., Yu S. P., Yang Y. Z., Liu X. G., Adv. Funct. Mater.202434(25), 2315366
27
Jiang K., Wang Y. H., Gao X. L., Cai C. Z., Lin H. W., Angew. Chem. Int. Ed.201857(21), 6216—6220
28
Shi H. X., Wu Y., Xu J. H., Zhou C. F., Xu H., Ye W. P., Yin Y. F., Wang Z. Y., Su R. F., An Z. F., Shi H. F., Chem. Eng. J.2023476, 146524
29
Tao S. Y., Lu S. Y., Geng Y. J., Zhu S. J., Redfern S. A. T., Song Y. B., Feng T. L., Xu W. Q., Yang B., Angew. Chem. Int. Ed.201857(9), 2393—2398
30
Knoblauch R., Bui B., Raza A., Geddes C. D., Phys. Chem. Chem. Phys.201820(22), 15518—15527
31
Shi H. X., Niu Z. J., Wang H., Ye W. P., Xi K., Huang X., Wang H. L., Liu Y. F., Lin H. W., Shi H. F., Chem. Sci.202213(15), 4406—4412
32
Wang Z. F., Shen J., Sun J. Z., Xu B., Gao Z. H., Wang X., Yan L. T., Zhu C. F., Meng X. G., J. Mater. Chem. C20219(14), 4847—4853
33
Xia C. L., Zhu S. J., Zhang S. T., Zeng Q. S., Tao S. Y., Tian X. Z., Li Y. F., Yang B., ACS Appl. Mater. Interfaces202012(34), 38593—38601
34
Li J. R., Wu Y. Z., Gong X., Chem. Sci.202314(14), 3705—3729
35
Huang K., Le N., Wang J. S., Huang L., Zeng L., Xu W. C., Li Z. J., Li Y., Han G., Adv. Mater.202234(14), e2107962
36
Van den Eeckhout K., Smet P. F., Poelman D., Materials20103(4), 2536—2566
37
Zhang J. W., Song Z. L., Cai P. Q., Wang X. F., Phys. Chem. Chem. Phys.202325(3), 1565—1587
38
Wang L. P., Tu D. T., Li C. L., Han S. Y., Wen F., Yu S. Q., Yi X. D., Xie Z., Chen X. Y., Matter20236(12), 4261—4273
39
Yang L., Gai S. L., Ding H., Yang D., Feng L. L., Yang P. P., Adv. Opt. Mater.202311(11), 2202382
40
Han B. Y., Lei X. S., Li D., Liu Q. D., Chen Y. J., Wang J., He G. H., Adv. Opt. Mater.202311(8), 2202293
41
Fu Q., Lu K. Z., Sun S. H., Dong Z. H., Nanoscale Horiz.20249(7), 1072—1098
42
Fu Q., Sun S. H., Dong Z. H., Yue M. B., Nano Mater. Sci.2024, 2589—9651
43
Li J. Y., Wang B. L., Zhang H. Y., Yu J. H., Small201915(32), e1805504
44
Pal A., Sk M. P., Chattopadhyay A., Mater. Adv.20201(4), 525—553
45
Zhou J., Yang Y., Zhang C. Y., Chem. Commun.201349(77), 8605—8607
46
Liu H., Liu Z. H., Zhang J. Q., Zhi L. J., Wu M. B., New Carbon Mater.202136(3), 585—593
47
Bolton O., Lee K., Kim H. J., Lin K. Y., Kim J., Nat. Chem.20113(3), 205—210
48
Li Q. J., Zhou M., Yang Q. F., Wu Q., Shi J., Gong A. H., Yang M. Y., Chem. Mater.201628(22), 8221—8227
49
Ding H., Yu S. B., Wei J. S., Xiong H. M., ACS Nano201610(1), 484—491
50
Liu J. C., Wang N., Yu Y., Yan Y., Zhang H. Y., Li J. Y., Yu J. H., Sci. Adv.20173(5), e1603171
51
Uoyama H., Goushi K., Shizu K., Nomura H., Adachi C., Nature2012492(7428), 234—238
52
Pan L. L., Sun S., Zhang A. D., Jiang K., Zhang L., Dong C. Q., Huang Q., Wu A. G., Lin H. W., Adv. Mater.201527(47), 7782—7787
53
Sun Y. P., Zhou B., Lin Y., Wang W., Fernando K. A. S., Pathak P., Meziani M. J., Harruff B. A., Wang X., Wang H. F., Luo P. G., Yang H., Kose M. E., Chen B., Veca L. M., Xie S. Y., J. Am. Chem. Soc.2006128(24), 7756—7757
54
Shi W. Y., Yao J., Bai L. Q., Lu C., Adv. Funct. Mater.201828(52), 1804961
55
Liang Y. C., Liu K. K., Wu X. Y., Lou Q., Sui L. Z., Dong L., Yuan K. J., Shan C. X., Adv. Sci.20218(6), 2003433
56
Long X., Zhang Y. Y., Chen X., Zhong Y. Q., Wu S. U., Hao L., Opt. Mater.2022132, 112829

Funding

the National Natural Science Foundation of China(52372047)

Comments

PDF(2165 KB)

Accesses

Citation

Detail

Sections
Recommended

/