
Preparation of Carbon Dots Fluorescent Marker and Its Application in Highly Selective NO2 ‒ Detection
WANG Changying, ZHANG Dawei, CHEN Guanji, ZHANG Zhenwei, XIAO Weihong, WANG Bin, CHEN Qidan, YANG Bai
Preparation of Carbon Dots Fluorescent Marker and Its Application in Highly Selective NO2 ‒ Detection
In this work, the yellow-green carbon dots(λ ex=440 nm) with a fluorescence emission wavelength of 535 nm were prepared by a one-step hydrothermal method using dopamine hydrochloride and o-phenylenediamine as raw materials, and then used as fluorescent marker materials for NO2 ‒ detection in water samples after purified and separated. The size of the carbon dots is about 3 nm with good dispersion, excellent salt resistance, stable fluorescence under a broad pH value. However, nitrite contaminants in water sources can cause methemoglobinemia disease and has potential carcinogenic risk. The results of the selectivity of the yellow-green carbon dots prepared to detect common contaminants in water samples showed that the carbon dots had a highly specific response to nitrite, and the detection limit was 0.1166 μg/mL(S/N=3, n=3), which meets the requirements of Chinese national standards for determination of NO2 ‒ in drinking water(≤1 μg/mL). The detection range of 0—60 μg/mL fits the Stern-Volmer equation, and the range of 0—10 μg/mL(y=0.02x+0.000876, R 2=0.9868) and 12—60 μg/mL(y=0.011x+0.198, R 2=0.9937) have good linear responses. In addition, the recoveries of three spiked water samples are from 90.8% to 100.8%(RSD=0.03%—0.86%, n=3) for the validation test. The method of the fluorescent carbon dots marker for contaminants developed in this work is fast and simple, low-cost and has greatly potential in trace nitrite analysis and can be an effective supplementary method for the monitoring of drinking water sources quality.
One-step hydrothermal method / Carbon dots / NO2 ‒ / Water quality monitoring
1 |
Xu X. Y., Ray R., Gu Y. L., Ploehn, H. J., Gearheart L., Raker K., Scrivens W. A., J. Am. Chem. Soc., 2004, 126(40), 12736—12737
|
2 |
Xia C. L., Zhong J. D., Han X., Zhu S. J., Li Y. F., Liu H., Yang B., Angew. Chem. Int. Ed., 2024, 63(44),e202410519
|
3 |
Yang Z., Xu T. T., Li H., She M. Y., Chen J., Wang Z. H., Zhang S. Y., Li J. L., Chem. Rev., 2023, 123(18), 11047—11136
|
4 |
Gilchrist M., Winyard P. G., Benjamin N., Nitric Oxide⁃Biol. Ch., 2010, 22(2),104—109
|
5 |
Khan S., Gupta A., Verma N. C., Nandi C. K., Nano Lett., 2015, 15(12), 8300—8305
|
6 |
Shamsipur M., Molaei K., Molaabasi F., Alipour M., Alizadeh N., Hosseinkhani S., Hosseini M., Talanta, 2018, 183,122—130
|
7 |
Huang S., Yang E. L., Yao J. D., Liu Y., Xiao Q., Anal. Chim. Acta, 2018, 1035, 192—202
|
8 |
Chen Q. X., Chen Q. D., Zhong X. Y., Spectrosc. Spect. Anal., 2020, 40(10), 3086—3091
陈绮娴, 陈奇丹, 钟学沅. 光谱学与光谱分析, 2020, 40(10),3086—3091
|
9 |
Brandow A. M., Nimmer M., Simmons T., Casper T. C., Cook L. J., Chumpitazi C. E., Scott J. P., Panepinto J. A., Brousseau D. C., Am. J. Hematol., 2016, 91(12), 1175—1180
|
10 |
Majumdar D., Resonance, 2003, 8(10), 20—30
|
11 |
World Health Organization, ISBN 978⁃92⁃4⁃004506⁃4, Guidelines for Drinking⁃water Quality: Fourth Edition Incorporating the First and Second Addenda, 2022
|
12 |
National Health Commission of the People’s Republic of China, GB 5749⁃2022, Standards for Drinking Water Quality, 2022
中华人民共和国国家卫生健康委员会, GB 5749⁃2022, 中国生活饮用水标准,, 2022
|
13 |
Bain R. E. S., Gundry S. W., Wright J. A., Yang H., Pedley S., Bartram J. K., Bull. World Health Organ., 2012, 90(3), 228—235
|
14 |
Zan M. H., Rao L., Huang H. M., Xie W., Zhu D. M., Li L., Qie X. W., Guo S. S., Zhao X. Z., Liu W., Dong W. F., Sens. Actuators B, 2018, 262, 555—561
|
15 |
Hu X. T., Shi J. Y., Shi Y. Q., Zou X. B., Tahir H. E., Holmes M., Zhang W., Huang X. W., Li Z. H., Xu Y. W., Meat Sci., 2019, 147, 127—134
|
16 |
Yue X. Y., Zhou Z. J., Wu Y. M., Jie M. S., Li Y., Guo H. B., Bai Y. H., New J. Chem., 2020, 44(20), 8503—8511
|
17 |
Jia J., Lu W. J., Li L., Gao Y. F., Jiao Y., Han H., Dong C., Shuang S. M., J. Mater. Chem. B, 2020, 8(10), 2123—2127
|
18 |
Ji C. Y., Han Q. R., Zhou Y. Q., Wu J. J., Shi W. Q., Gao L. P., Leblanc R. M., Peng Z. L., Carbon, 2022, 192, 198—208
|
19 |
Lu S. Y., Sui L. Z., Liu J. J., Zhu S. J., Chen A. M., Jin M. X., Yang B., Adv. Mater., 2017, 29(15), 1603443
|
20 |
Wang H. Y., Chen D. L., Zhang S. Y., Li S., Yang X., Liang L., J. Anal. Sci., 2021, 37(3), 346—350
王惠英, 陈丁龙, 张绍岩, 李爽, 杨旭, 梁莉. 分析科学学报, 2021, 37(3), 346—350
|
21 |
Jia J., Lu W. J., Li L., Jiao Y., Gao Y. F., Shuang S. M., Chinese J. Anal. Chem., 2019, 47(4), 560—566
贾晶, 路雯靖, 李林, 焦媛, 高艺芳, 双少敏. 分析化学, 2019, 47(4), 560—566
|
22 |
Tao H. H., Zhang Z., Cao Q., Li L. F., Xu S. H., Jiang C. L., Li Y. C., Liu Y. Y., RSC Adv., 2022 , 12(20), 12655—12662
|
23 |
Zhan Y. J., Zeng Y. B., Li L., Luo F., Qiu B., Lin Z. Y., Guo L. H., ACS Sens., 2019, 4(5), 1252—1260
|
24 |
Yin X. Y., Wang C. Z., Wei S. S., Liu M., Hu K. X., Song X. W., Sun G. Y., Lu L. H., Food Chem., 2025, 463, 141213
|
25 |
Ciotta E., Prosposito P., Pizzoferrato R., J. Lumin., 2019, 206, 518—522
|
/
〈 |
|
〉 |