
Applications and Prospects of Carbon Dots in Interface Engineering of Organic Solar Cells
WANG Xin, WANG Yu, MU Fumao, YAN Lingpeng, WANG Zhenguo, YANG Yongzhen
Applications and Prospects of Carbon Dots in Interface Engineering of Organic Solar Cells
Organic solar cells(OSCs) have gradually become a research focus in the photovoltaic field due to their advantages, such as simple fabrication processes, diverse material sources, flexibility, and roll-to-roll production capability. However, as OSCs move toward further commercialization, they face challenges such as improving power conversion efficiency(PCE), scaling up production, reducing costs, and enhancing stability. In addressing these issues, carbon dots(CDs) have garnered widespread attention due to their low cost, diverse structures, environmental friendliness, wide availability, high conductivity, and good stability. In OSC devices, CDs can be used as charge transport layers and interface modification materials, improving the energy level matching and charge transport performance at the cell interface through interface engineering, thereby enhancing the overall performance of OSCs and providing new insights for the development of photovoltaic cells. In this review, the concept, classification, and unique structural features of CDs are introduced. Then, the excellent tunable optoelectronic properties and functionalization modification methods of CDs are highlighted. Furthermore, the application of CDs in the field of interface engineering of OSCs is comprehensively summarized, and finally the challenges associated with CDs-based interface materials in OSCs, along with prospects for their further development, are addressed.
Organic solar cell / Carbon dots / Interface engineering / Charge transfer / Photoelectric conversion
1 |
Zhao J., Yang X., Shao Y., Sun R., Min J., Sci. China Mater., 2024, doi.org/10.1007/s40843-024-3074-6
|
2 |
Kini G. P., Jeon S. J., Moon D. K., Adv. Funct. Mater., 2021, 31(15), 2007931
|
3 |
Chen X., Qian D., Wang Y., Kirchartz T., Tress W., Yao H., Yuan J., Hülsbeck M., Zhang M., Zou Y., Sun Y., Li Y., Hou J., Inganäs O., Coropceanu V., Bredas J. L., Gao F., Nature Energy, 2021, 6(8), 799—806
|
4 |
Mu Q., Feng L., Li Z., Fan K., Li Q., Wei Z., Cheng Y., Xu B., Sol. RRL, 2024, 8(18), 2400486
|
5 |
Gong Y., Zou T., Li X., Qin S., Sun G., Liang T., Zhou R., Zhang J., Zhang J., Meng L., Wei Z., Li Y., Energy Environ. Sci., 2024, 17, 6844—6855
|
6 |
Liu H., Li Y., Xu S., Zhou Y., Li Z., Adv. Funct. Mater., 2021, 31(50), 2106735
|
7 |
Fukuda K., Yu K., Someya T., Adv. Energy Mater., 2020, 10(25), 2000765
|
8 |
Yu R., Wu G., Tan Z., J. Energy Chem., 2021, 61, 29—46
|
9 |
Gao J., Ma X., Xu C., Wang X., Son J., Jeong S. Y., Zhang Y., Zhang C., Wang K., Niu L., Zhang J., Woo H. Y., Zhang J., Zhang F., Chem. Eng. J., 2022, 428, 129276
|
10 |
Guan S., Li Y., Xu C., Yin N., Xu C., Wang C., Wang M., Xu Y., Chen Q., Wang D., Zuo L., Chen H., Adv. Mater., 2024, 36, 2400342
|
11 |
Ye L., Xiong Y., Zhang Q., Li S., Wang C., Jiang Z., Hou J., You W., Ade H., Adv. Mater., 2018, 30(8), 1705485
|
12 |
Liu Y., Liu B., Ma C., Huang F., Feng G., Chen H., Hou J., Yan L., Wei Q., Luo Q., Bao Q., Ma W., Liu W., Li W., Wan X., Hu X., Han Y., Li Y., Zhou Y., Zou Y., Chen Y., Liu Y., Meng L., Li Y., Chen Y., Tang Z., Hu Z., Zhang Z., Bo Z., Sci. China Chem., 2022, 65, 224—268
|
13 |
Bao L., Zhang Z., Tian Z., Zhang L., Liu C., Lin Y., Qi B., Pang D., Adv. Mater., 2011, 23(48), 5801—5806
|
14 |
Kang Z., Lee S. T., Nanoscale, 2019, 11(41), 19214—19224
|
15 |
Yeh T. F., Huang W., Chung C., Chiang I. T., Chen L., Chang H., Su W., Cheng C., Chen S., Teng H., J. Phys. Chem. Lett., 2016, 7(11), 2087—2092
|
16 |
Zhao W., Li X., Zha H., Yang Y., Yan L., Luo Q., Liu X., Wang H., Ma C. Xu B., Chin. J. Polym. Sci., 2022, 40(1), 7—20
|
17 |
Iijima S., Nature, 1991, 354(6348), 56—58
|
18 |
Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A., Science, 2004, 306, 666—669
|
19 |
Xu X., Ray R., Gu Y., Ploehn H. J., Gearheart L., Raker K., Scrivens W. A., J. Am. Chem. Soc., 2004, 126(40), 12736—12737
|
20 |
Sun Y., Zhou B., Lin Y., Wang W., Fernando K. S., Pathak P., Meziani M. J., Harruff B. A., Wang X., Wang H., J. Am. Chem. Soc., 2006, 128(24), 7756—7757
|
21 |
Cai T., Liu B., Pang E., Ren W., Li S., Hu S., New Carbon Mater., 2020, 35(6), 646—666
|
22 |
Lu S., Yang B., SmartMat, 2022, 3(2), 207
|
23 |
Xia C., Zhu S., Feng T., Yang M., Yang B., Adv. Sci., 2019, 6(23), 1901316
|
24 |
Zhao X., Tao S., Yang B., Chinese J. Chem., 2023, 41(17), 2206—2216
|
25 |
Kong J., Wei Y., Zhou F., Shi L., Zhao S., Wan M., Zhang X., Molecules, 2024, 29(9), 2002
|
26 |
Vercelli B., Coatings, 2021, 11(2), 232
|
27 |
Shin D. H., Seo S. W., Kim J. M., Lee H. S., Choi S. H., J. Alloys Compd., 2018, 744, 1—6
|
28 |
Zhang X., Li Z., Zhang Z., Li S., Liu C., Guo W., Shen L., Wen S., Qu S., Ruan S., J. Phys. Chem. C, 2016, 120(26), 13954—13962
|
29 |
Wang W., Li X., Li M., Zhong W., Yuan Y., Lin Z., Zhu Y., Zhu S., Yang T., Liang Y., ACS Appl. Nano Mater., 2024, 7(17), 19963—19969
|
30 |
Yue L., Wei Y., Fan J., Chen L., Li Q., Du J., Yu S., Yang Y., New Carbon Mater., 2021, 36(2), 373—389
|
31 |
Namdari P., Negahdari B., Eatemadi A., Biomed. Pharmacother., 2017, 87, 209—222
|
32 |
Sciortino A., Cannizzo A., Messina F., C⁃J. Carbon Res., 2018, 4(4), 67
|
33 |
Li K., Suo W., Shao M., Zhu Y., Wang X., Feng J., Fang M., Zhu Y., Nano Energy, 2019, 63, 103834
|
34 |
Song H., Liu X., Wang B., Tang Z., Lu S., Sci. Bull., 2019, 64(23), 1788—1794
|
35 |
Zhu S., Meng Q., Wang L., Zhang J., Song Y., Jin H., Zhang K., Sun H., Wang H., Yang B., Angew. Chem. Int. Ed., 2013, 52(14), 3953—3957
|
36 |
Tang L., Ji R., Li X., Bai G., Liu C., Hao J., Lin J., Jiang H., Teng K., Yang Z., ACS Nano, 2014, 8(6), 6312—6320
|
37 |
Wu, Z., Liu Z., Yuan Y., J. Mater. Chem. B, 2017, 5(21), 3794—3809
|
38 |
Holá K., Sudolská M., Kalytchuk S., Nachtigallová D., Rogach A. L., Otyepka M., Zbořil R., ACS Nano, 2017, 11(12), 12402—12410
|
39 |
Yang Y., Lin X., Li W., Ou J., Yuan Z., Xie F., Hong W., Yu D., Ma Y., Chi Z., Chen X., ACS Appl. Mater., 2017, 9(17), 14953—14959
|
40 |
Zhan J., Geng B., Wu K., Xu G., Wang L., Guo R., Lei B., Zheng F., Pan D., Wu M., Carbon, 2018, 130, 153—163
|
41 |
Zhang M., Hu L., Wang H., Song Y., Liu Y., Li H., Shao M., Huang H., Kang Z., Nanoscale, 2018, 10(26), 12734—12742
|
42 |
Lu S., Xiao G., Sui L., Feng T., Yong X., Zhu S., Li B., Liu Z., Zou B., Jin M., Tse J. S., Yan H., Yang B., Angew. Chem. Int. Ed., 2017, 129(22), 6283—6287
|
43 |
Yu Y., Zeng Q., Tao S., Xia C., Liu C., Liu P., Yang B., Adv. Sci., 2023, 10(12), 2207621
|
44 |
Molaei M., Sol. Energy, 2020, 196, 549—566
|
45 |
He C., Peng L., Li L., Cao Y., Tu J., Huang W., Zhang K., RSC Adv., 2019, 9(26), 15084—15091
|
46 |
Jia X., Li J., Wang E., Nanoscale, 2012, 4(18), 5572—5575
|
47 |
Shen J., Zhu Y., Chen C., Yang X., Li C., Chem. Commun., 2011, 47(9), 2580—2582
|
48 |
Li S., He Z., Zhang S., Hao Z., Zhong H., ACS Appl. Mater. Interfaces, 2024, 16(35), 46332—46340
|
49 |
Javed N., O'Carroll D. M., Part. Part. Syst. Char., 2021, 38(4), 2000271
|
50 |
Tian X., Li Y., Cui M., Wang Y., Hao X., Zhang Y., Li N., Chen Y., Gao X., Rong Q., Nian L., Org. Electron., 2022, 108, 106578
|
51 |
Liu J., Li R., Yang B., ACS Cent. Sci., 2020, 6, 2179—2195
|
52 |
Yan L., Yang Y., Ma C., Liu X., Wang H., Xu B., Carbon, 2016, 109, 598—607
|
53 |
Dong Y., Yu R., Zhao B., Gong Y., Jia H., Ma Z., Gao H., Tan Z., ACS Appl. Mater., 2022, 14(1), 1280—1289
|
54 |
Hazra N., Hazra S., Paul S., Banerjee A., Chem. Commun., 2023, 59, 4931—4934
|
55 |
Fang M., Wang B., Qu X., Li S., Huang J., Li J., Lu S., Zhou N., Chin. Chem. Lett., 2024, 35(1), 108423
|
56 |
Li X., Wang W., Zhong W., Tang Y., Wang X., Li H., Yang T., Liang Y., Adv. Mater. Interfaces, 2023, 10(35), 2300502
|
57 |
Chen B., Liu M., Li C., Huang C., Adv. Colloid Interface Sci., 2019, 270, 165—190
|
58 |
Miao S., Liang K., Zhu J., Yang B., Zhao D., Kong B., Nano Today, 2020, 33, 100879
|
59 |
Nguyen D. N., Roh S. H., Kim D. H., Lee J. Y., Wang D. H., Kim J. K., Dyes Pigm., 2021, 194, 109610
|
60 |
Fu Q., Sun S., Lu K., Li N., Dong Z., Chin. Chem. Lett., 2024, 35(7), 109136
|
61 |
Fu Q., Li N., Lu K., Dong Z., Yang Y., Mater. Today Chem., 2024, 37, 102032
|
62 |
Shen J., Zhang T., Cai Y., Chen X., Shang S., Li J., New J. Chem., 2017, 41(19), 11125—11137
|
63 |
Wu M., Li J., Wu Y., Gong X., Wu M., Small, 2023, 19(42), 2302764
|
64 |
Sato K., Sato R., Iso Y., Isobe T., Chem. Commun., 2020, 56(14), 2174—2177
|
65 |
Kearns D., Calvin M., J. Chem. Phys., 1958, 29(4), 950—951
|
66 |
Pang S., Chen Z., Li J., Chen Y., Liu Z., Wu H., Duan C., Huang F., Cao Y., Mater. Horiz., 2023, 10(2), 473—482
|
67 |
Georgiopoulou Z., Verykios A., Ladomenou K., Maskanaki K., Chatzigiannakis G., Armadorou K. K., Palilis L. C., Chroneos A., Evangelou E. K., Gardelis S., Nanomaterials, 2023, 13(1), 169
|
68 |
Li M., Ni W., Kan B., Wan X., Zhang L., Zhang Q., Long G., Zuo Y., Chen Y., Phys. Chem. Chem. Phys., 2013, 15(43), 18973—18978
|
69 |
Ding Z., Hao Z., Meng B., Xie Z., Liu J., Dai L., Nano Energy, 2015, 15, 186—192
|
70 |
Hoang T. T., Pham H. P., Tran Q. T., J. Nanomater., 2020, 2020(1), 3207909
|
71 |
Li S., Li L., Tu H., Zhang H., Silvester D. S., Banks C. E., Zou G., Hou H., Ji X., Mater. Today, 2021, 51, 188—207
|
72 |
Ding Z., Miao Z., Xie Z., Liu J., J. Mater. Chem. A, 2016, 4(7), 2413—2418
|
73 |
Xu H., Zhang L., Ding Z., Hu J., Liu J., Liu Y., Nano Res., 2018, 11, 4293—4301
|
74 |
Zhang R., Zhao M., Wang Z., Wang Z., Zhao B., Miao Y., Zhou Y., Wang H., Hao Y., Chen G., ACS Appl. Mater. Interfaces, 2018, 10(5), 4895—4903
|
75 |
Zhao W., Yan L., Gu H., Li Z., Wang Y., Luo Q., Yang Y., Liu X., Wang H., Ma C., ACS Appl. Energy Mater., 2020, 3(11), 11388—11397
|
76 |
Zhu Y., Dai C., Hao C., Guo H., Yan L., Colloid. Surface. A, 2022, 648, 129401
|
77 |
Lin X., Yang Y., Nian L., Su H., Ou J., Yuan Z., Xie F., Hong W., Yu D., Zhang M., Nano Energy, 2016, 26, 216—223
|
78 |
Zhang X., Liu C., Li Z., Guo J., Shen L., Guo W., Zhang L., Ruan S., Long Y., Chem. Eng. J., 2017, 315, 621—629
|
79 |
Wang Y., Yan L., Ji G., Wang C., Gu H., Luo Q., Chen Q., Chen L., Yang Y., Ma C., ACS Appl. Mater., 2018, 11(2), 2243—2253
|
80 |
Kang R., Park S., Jung Y. K., Lim D. C., Cha M. J., Seo J. H., Cho S., Adv. Energy Mater., 2018, 8(10), 1702165
|
81 |
Juang T., Kao J., Wang J., Hsu S., Chen C., Adv. Mater. Interfaces, 2018, 5(10), 1800031
|
82 |
Park S., Lee H., Park S. W., Kim T. E., Park S. H., Jung Y. K., Cho S., Curr. Appl Phys., 2021, 21, 140—146
|
83 |
Nguyen D. C., Kim B. S., Oh G. H., Vu V. P., Kim S., Lee S. H., Synth. Met., 2023, 298, 117430
|
84 |
Tafese B. N., Aga F. G., Ganesh T., Geffe C. A., Int. J. Energy Res., 2023, 2023(1), 8847653
|
85 |
Li Z., Zhang X., Liu C., Guo J., Cui H., Shen L., Guo W., ACS Appl. Mater. Interfaces, 2018, 10(46), 40255—40264
|
/
〈 |
|
〉 |