
Research Progress of Carbon-based Moisture Power Generation Devices
LI Qijun, ZHAO Hongjia, LIU Longtao, LU Chunyi, TAN Jing
Research Progress of Carbon-based Moisture Power Generation Devices
Moisture-enabled electricity generation(MEG), an emerging energy-harvesting technology, has attracted significant attention in recent years. Owing to the ubiquitous presence of water vapor and the pollution-free nature of the power generation process, MEG technology demonstrates strong adaptability, that is, it is not limited by natural conditions such as season, region and environment. This paper presents a comprehensive review of the evolution of MEG technology. It discusses the interaction mechanism between moisture and power generation materials, primarily focusing on ion gradient diffusion and streaming potential. It also provides a detailed analysis of the types, characteristics, advantages and disadvantages of new carbon-based hygroscopic layer materials. Furthermore, it describes the development of moisture power generation technology in the latest application fields.
Water vapor / Hygroscopic layer / Electrode / Moisture power generation
1 |
Wang X., Lin F., Wang X., Fang S., Tan J., Chu W., Rong R., Yin J., Zhang Z., Liu Y., Guo W., Chem. Soc. Rev., 2022, 51, 4902—4927
|
2 |
Zhao F., Cheng H., Zhang Z., Jiang L., Qu L., Adv. Mater., 2015, 27, 4351—4357
|
3 |
Lu W., Ong W. L., Ho G. W., J. Mater. Chem. A, 2023, 11, 12456—12481
|
4 |
Zhang Z., Li X., Yin J., Xu Y., Fei W., Xue M., Wang Q., Zhou J., Guo W., Nat. Nanotech., 2018, 13, 1109—1119
|
5 |
Yang S., Tao X., Chen W., Mao J., Luo H., Lin S., Zhang L., Hao J., Adv. Mater., 2022, 34, 2200693
|
6 |
Xue G., Xu Y., Ding T., Li J., Yin J., Fei W., Cao Y., Yu J., Yuan L., Gong L., Chen J., Deng S., Zhou J., Guo W., Nat. Nanotech., 2017, 12, 317—321
|
7 |
Sun Z., Feng L., Wen X., Wang L., Qin X., Yu J., Mater. Horiz., 2021, 8, 2303—2309
|
8 |
He T., Wang H., Lu B., Guang T., Yang C., Huang Y., Cheng H., Qu L., Joule, 2023, 7, 935—951
|
9 |
Zhao F., Liang Y., Cheng H., Jiang L., Qu L., Energ. Environ. Sci., 2016, 9, 912—916
|
10 |
Huang Y., Cheng H., Yang C., Zhang P., Liao Q., Yao H., Shi G., Qu L., Nat. Commun., 2018, 9, 4166
|
11 |
Xiong C., Li B., Duan C., Dai L., Nie S., Qin C., Xu Y., Ni Y., Chem. Eng. J., 2021, 418, 129518
|
12 |
Zhu R., Zhu Y., Chen F., Patterson R., Zhou Y., Wan T., Hu L., Wu T., Joshi R., Li M., Cazorla C., Lu Y., Han Z., Chu D., Nano Energy, 2022, 94, 106942
|
13 |
Zhao C. X., Liu J. N., Li B. Q., Ren D., Chen X., Yu J., Zhang Q., Adv. Funct. Mater., 2020, 30, 2003619
|
14 |
Han Y., Zhang Z., Qu L., FlatChem, 2019, 14, 100090
|
15 |
Huang Y., Cheng H., Shi G., Qu L., ACS Appl. Mater. Interfaces, 2017, 9, 38170—38175
|
16 |
Lee K. H., Park H., Eom W., Kang D. J., Noh S. H., Han T. H., J. Mater. Chem. A, 2019, 7, 23727—23732
|
17 |
Badatya S., Kumar A., Sharma C., Srivastava A. K., Chaurasia J. P., Gupta M. K., Mater. Lett., 2021, 290, 129493
|
18 |
Ru Y., Ai L., Jia T., Liu X., Lu S., Tang Z., Yang B., Nano Today, 2020, 34, 100953
|
19 |
Zhu S., Zhang J., Qiao C., Tang S., Li Y., Yuan W., Li B., Tian L., Liu F., Hu R., Gao H., Wei H., Zhang H., Sun H., Yang B., Chem. Commun., 2011, 47, 6858—6860
|
20 |
Xia C., Zhu S., Feng T., Yang M., Yang B., Adv. Sci., 2019, 6, 1901316
|
21 |
Li Q., Zhou M., Yang Q., Yang M., Wu Q., Zhang Z., Yu J., J. Mater. Chem. A, 2018, 6, 10639—10643
|
22 |
Qin J., Yang X., Shen C., Chang Y., Deng Y., Zhang Z., Liu H., Lv C., Li Y., Zhang C., Dong L., Shan C., Nano Energy, 2022, 101, 107549
|
23 |
Yan Z., Li N., Chang Q., Xue C., Yang J., Hu S., Chem. Eng. J., 2023, 467, 143443
|
24 |
Li Q., Qin Y., Cheng D., Cheng M., Zhao H., Li L., Qu S., Tan J., Ding J., Adv. Funct. Mater., 2023, 33, 2211013
|
25 |
Liu X., Gao H., Ward J. E., Liu X., Yin B., Fu T., Chen J., Lovley D. R., Yao J., Nature, 2020, 578, 550—554
|
26 |
Yang W. Q., Study on the Construction and Properties of Moisture Power Generation Materials Based on Biomass Nanofibers, Qingdao University, Qingdao, 2020
杨伟庆. 基于生物质纳米纤维的湿气发电材料构筑及其性能研究, 青岛: 青岛大学, 2020
|
27 |
Bao R., Luo H., Liu L., Yi J., Tao J., Li C., Compos. Commun., 2023, 38, 101491
|
28 |
Sun Z., Feng L., Xiong C., He X., Wang L., Qin X., Yu J., J. Mater. Chem. A, 2021, 9, 7085—7093
|
29 |
Tan J., Fang S., Zhang Z., Yin J., Li L., Wang X., Guo W., Nat. Commun., 2022, 13, 3643
|
30 |
Zhu R., Zhu Y., Hu L., Guan P., Su D., Zhang S., Liu C., Feng Z., Hu G., Chen F., Wan T., Guan X., Wu T., Joshi R., Li M., Cazorla C., Lu Y., Han Z., Xu H., Chu D., Energ. Environ. Sci., 2023, 16, 2338—2345
|
31 |
Bai J., Huang Y., Wang H., Guang T., Liao Q., Cheng H., Deng S., Li Q., Shuai Z., Qu L., Adv. Mater., 2022, 34, 2103897
|
32 |
Bai J., Liao Q., Yao H., Guang T., He T., Cheng H., Qu L., Energ. Environ. Sci., 2023, 16, 3088—3097
|
33 |
Maity D., Fussenegger M., Adv. Sci., 2023, 10, 2300750
|
34 |
Xu T., Ding X., Huang Y., Shao C., Song L., Gao X., Zhang Z., Qu L., Energ. Environ. Sci., 2019, 12, 972—978
|
35 |
Nie X., Ji B., Chen N., Liang Y., Han Q., Qu L., Nano Energy, 2018, 46, 297—304
|
36 |
Duan W., Shao B., Wang Z., Ni K., Liu S., Yuan X., Wang Y., Sun B., Zhang X., Liu R., Energ. Environ. Sci., 2024, 17, 3788—3796
|
37 |
Wu P., Chen Y., Luo Y., Ji W., Wang Y., Qian Z., Duan Y., Li X., Fu S., Gao W., Liu D., ACS Appl. Mater. Interfaces, 2024, 16, 32198—32208
|
38 |
Shen D., Xiao M., Zou G., Liu L., Duley W. W., Zhou Y. N., Adv. Mater., 2018, 30, 1705925
|
39 |
Qin Y., Wang Y., Sun X., Li Y., Xu H., Tan Y., Li Y., Song T., Sun B., Angew. Chem. Inter. Ed., 2020, 59, 10619—10625
|
40 |
Yang S., Zhang L., Mao J., Guo J., Chai Y., Hao J., Chen W., Tao X., Nat. Commun., 2024, 15, 3329
|
41 |
Huang Y., Cheng H., Qu L., ACS Mater. Lett., 2021, 3, 193—209
|
42 |
Bai J. X., Huang Y. X., Wang H. Y., Guang T. L., Liao Q. H., Cheng H. H., Deng S. H., Li Q. K., Shuai Z. G., Qu L. T., Adv. Mater., 2022, 34, 2103897
|
43 |
Xu T., Ding X., Cheng H., Han G., Qu L., Adv. Mater., 2024, 36, 2209661
|
44 |
Xu Y., Li Z., Shi C., Li Y., Lei Y., Peng G., Yu T., Ren H., Wang H., Fan H., Zhang Y., Ci Z., Wang Q., Jin Z., Adv. Mater., 2024, 36, 2406128
|
45 |
Wang H., Sun Y., He T., Huang Y., Cheng H., Li C., Xie D., Yang P., Zhang Y., Qu L., Nat. Nanotech., 2021, 16, 811—819
|
46 |
Yang S., Zhang L., Mao J., Guo J., Chai Y., Hao J., Chen W., Tao X., Nat. Commun., 2024, 15, 3329
|
47 |
Bai J., Huang Y., Cheng H., Qu L., Nanoscale, 2019, 11, 23083—23091
|
48 |
Duan Z., Yuan Z., Jiang Y., Zhao Q., Huang Q., Zhang Y., Liu B., Tai H., Chem. Eng. J., 2022, 446, 136910
|
49 |
Gao K., Sun J., Lin X., Li Y., Sun X., Chen N., Qu L., J. Mater. Chem. A, 2021, 9, 24488—24494
|
50 |
He W., Li P., Wang H., Hu Y., Lu B., Weng C., Cheng H., Qu L., ACS Nano, 2024, 18, 12096—12104
|
/
〈 |
|
〉 |