
Preparation of Carbon Dot-based Multicolor Room-temperature Phosphorescent Materials via Precursor Structure Regulation Strategies
LIU Jinkun, RAN Zhun, LIU Qingqing, LIU Yingliang, ZHUANG Jianle, HU Chaofan
Preparation of Carbon Dot-based Multicolor Room-temperature Phosphorescent Materials via Precursor Structure Regulation Strategies
In this paper, a simple precursor molecular structure regulation strategy was presented, and carbon dot-based composites with phosphorescent emission colors covering the visible light spectrum were prepared through an in situ calcination method using Al2O3 as a matrix and various small molecules as organic precursors. Transmission electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy confirmed the successful growth of carbon dots within the Al2O3 matrix. Fluorescence spectroscopy tests indicated that the phosphorescent colors of the four CDs@Al2O3 composites were blue(454 nm), green(520 nm), orange(572 nm), and red(632 nm), with average lifetimes of 130.6, 293.6, 498.6, and 539.0 ms, respectively. The observed redshift in phosphorescent emission wavelength attributed to the decrease in the energy gap between the excited state and ground state of the carbon dots with increasing π-conjugation and number of oxygen-containing functional groups in the precursor, which achieved the modulation of multicolor phosphorescent emissions. Based on the multicolor room-temperature phosphorescent characteristics of this material, its applications in anti-counterfeiting and information encryption was preliminarily explored.
Carbon dots / Room temperature phosphorescence / Long afterglow / Al2O3
1 |
Liu H. X., Zhong X., Pan Q., Zhang Y., Deng W. T., Zou G. Q., Hou H. S., Ji X. B., Coord. Chem. Rev., 2024, 498, 215468
|
2 |
Ðorđević L., Arcudi F., Cacioppo M., Prato M., Nat. Nanotechnol., 2022, 17(2), 112—130
|
3 |
Sun Y. Q., Liu S. T., Sun L. Y., Wu S. S., Hu G. Q., Pang X. L., Smith A., Hu C. F., Zeng S. S., Wang W. X., Nat. Commun., 2020, 11(1), 5591
|
4 |
Wareing T., Gentile P., Phan A., ACS Nano, 2021, 15(10), 15471—15501
|
5 |
Li W., Zhou W., Zhou Z. S., Zhang H. R., Zhang X. J., Zhuang J. L., Liu Y. L., Lei B. F., Hu C. F., Angew. Chem. Int. Ed., 2019, 131(22), 7356—7361
|
6 |
Li J., Zhou H., Jin S., Xu B., Teng Q., Li C. H., Li J. S., Li Q. J., Gao Z. H., Zhu C. F., Adv. Mater., 2024, 36(24), 2401493
|
7 |
Geng B. J., Hu J. Y., Li Y., Feng S. N., Pan D. Y., Feng L. Y., Shen L. X., Nat. Commun., 2022, 13(1), 5735
|
8 |
Yu X. W., Liu K. K., Wang B. L., Zhang H. Y., Qi Y. Y., Yu J. H., Adv. Mater., 2023, 35(6), 2208735
|
9 |
Wang B. Y., Lu S. Y., Matter, 2022, 5(1), 110—149
|
10 |
Ran Z., Liu J. K., Zhuang J. L., Liu Y. L., Hu C. F., Small Methods, 2024, 8(1), 2301013
|
11 |
Zhou S. J., Wang F. X., Feng N., Xu A. X., Sun X. F., Zhou J., Li H. G., Small, 2023, 19(33), 2301240
|
12 |
Lou Q., Chen N., Zhu J. Y., Liu K. K., Li C., Zhu Y. S., Xu W., Chen X., Song Z. J., Liang C. H., Adv. Mater., 2023, 35(20), 2211858
|
13 |
Xia C. L., Zhu S. J., Zhang S. T., Zeng Q. S., Tao S. Y., Tian X. Z., Li Y. F., Yang B., ACS Appl. Mater. Interfaces, 2020, 12(34), 38593—38601
|
14 |
Li Q. J., Cheng D. K., Gu H. L., Yang D. Q., Li Y. C., Meng S., Zhao Y. Y., Tang Z. K., Zhang Y. B., Tan J., Chem. Eng. J., 2023, 462, 142339
|
15 |
Wang B. L., Mu Y., Zhang H. Y., Shi H. Z., Chen G. R., Yu Y., Yang Z. Q., Li J. Y., Yu J. H., ACS Cent. Sci., 2019, 5(2), 349—356
|
16 |
Mo L. Q., Liu H., Liu Z. M., Xu X. K., Lei B. F., Zhuang J. L., Liu Y. L., Hu C. F., Adv. Opt. Mater., 2022, 10(10), 2102666
|
17 |
He Z. G., Sun Y. D., Zhang C., Zhang J., Liu S. J., Zhang K., Lan M. H., Carbon, 2023, 204, 76—93
|
18 |
Zhang Y. Q., Chen L., Liu B., Yu S. P., Yang Y. Z., Liu X. G., Adv. Funct. Mater., 2024, 34(25), 2315366
|
19 |
Ding Z. Z., Shen C. L., Han J. F., Zheng G. S., Ni Q. C., Song R. W., Liu K. K., Zang J. H., Dong L., Lou Q., Small, 2023, 19(31), 2205916
|
20 |
Wang B. Y., Waterhouse G., Lu S. Y., Trends Chem., 2023, 5(1), 76—87
|
21 |
Kumari R., Kumar A., Negi K., Sahu S., ACS Appl. Nano Mater., 2023, 6(2), 918—929
|
22 |
Shi H. X., Niu Z. J., Wang H., Ye W. P., Xi K., Huang X., Wang H. L., Liu Y. F., Lin H. W., Shi H. F., An Z. F., Chem. Sci., 2022, 13(15), 4406—4412
|
23 |
Tan J., Yi Z. Z., Ye Y. X., Ren X. D., Li Q. J., J. Lumin., 2020, 223, 117267
|
24 |
Patra A., Dutta A., Bhaumik A., J. Hazard. Mater., 2012, 201, 170—177
|
25 |
Sun W. X., Zhang Y. Q., Yin G. C., Lu S. Y., Adv. Funct. Mater., 2024, 34(37), 2402346
|
26 |
Liu Y. P., Wang B. Z., Zhang Y. S., Guo J., Wu X. Y., OuYang D. F., Chen S., Chen Y. Q., Wang S. P., Xing G. C., Adv. Funct. Mater., 2024, 2401353
|
27 |
Ge W. Y., Zhang P. F., Zhang X. M., Gao W. X., Lu C. H., Ge Y., ACS Sustainable Chem. Eng., 2021, 9(30), 10220—10226
|
28 |
Ai L., Song Z. Q., Nie M. J., Yu J. K., Liu F. K., Song H. Q., Zhang B., Waterhouse G., Lu S.Y., Angew. Chem. Int. Ed., 2023, 62(12), e202217822
|
29 |
Li C. C., Zhao X. Y., Li C., Hu J. H., Zhu J. Y., Lou Q., Chen N., Song Z. J., Chen X., Pan G. C., J. Alloys Compd., 2023, 948, 169674
|
30 |
Arcudi F., Đorđević L., Prato M., Angew. Chem. Int. Ed., 2017, 129(15), 4234—4237
|
31 |
He J. L., Chen Y. H., He Y. L., Xu X. K., Lei B. F., Zhang H. R., Zhuang J. L., Hu C. F., Liu Y. L., Small, 2020, 16(49), 2005228
|
32 |
Song Z. J., Liu Y. L., Lin X. M., Zhou Z. S., Zhang X. J., Zhuang J. L., Lei B. F., Hu C. F., ACS Appl. Mater. Interfaces, 2021, 13(29), 34705—34713
|
33 |
Wan Z. J., Li Y. M., Zhou Y. Z., Peng D. P., Zhang X. J., Zhuang J. L., Lei B. F., Liu Y. L., Hu C. F., Adv. Funct. Mater., 2023, 33(11), 2207296
|
34 |
Han Y., Li M., Lai J. W., Li W. T., Liu Y. J., Yin L. Q., Yang L. Q., Xue X. G., Vajtai R., Ajayan P., ACS Sustainable Chem. Eng., 2019, 7(24), 19918—19924
|
35 |
Wang B. Y., Wang H. W., Hu Y. S., Waterhouse G., Lu S. Y., Nano Lett., 2024, 24(9), 2904—2911
|
36 |
Liu J. K., Luo Y. M., Ran Z., Wang F. L., Sun M. H., Luo Y. Y., Zhuang J. L., Zhang X. J., Lei B. F., Liu Y. L., Hu C. F., Chem. Eng. J., 2023, 474, 145597
|
37 |
Zhou Z. S., Song Z. J., Liu J. K., Lei B. F., Zhuang J. L., Zhang X. J., Liu Y. L., Hu C. F., Adv. Opt. Mater., 2022, 10(1), 2100704
|
38 |
Wu Y. C., Sun L. L., Han H. H., He X. P., Cao W. G., James T., Chem. Sci., 2024, 15(2), 757—764
|
39 |
Liang P., Zheng Y. H., Zhang X. C., Wei H. P., Xu X. K., Yang X. F., Lin H. H., Hu C. F., Zhang X. J., Lei B. F., Nano Lett., 2022, 22(13), 5127—5136
|
40 |
Lu D., Lu K., Wen H. T., Wei Z., Bianco A., Wang G. G., Zhang H. Y., Small, 2023, 19(31), 2207046
|
/
〈 |
|
〉 |