Preparation of Carbon Dot-based Multicolor Room-temperature Phosphorescent Materials via Precursor Structure Regulation Strategies

LIU Jinkun, RAN Zhun, LIU Qingqing, LIU Yingliang, ZHUANG Jianle, HU Chaofan

PDF(2683 KB)
PDF(2683 KB)
Chem J Chin Univ ›› 2025, Vol. 46 ›› Issue (6) : 193-201. DOI: 10.7503/cjcu20240412
Article

Preparation of Carbon Dot-based Multicolor Room-temperature Phosphorescent Materials via Precursor Structure Regulation Strategies

Author information +
History +

Abstract

In this paper, a simple precursor molecular structure regulation strategy was presented, and carbon dot-based composites with phosphorescent emission colors covering the visible light spectrum were prepared through an in situ calcination method using Al2O3 as a matrix and various small molecules as organic precursors. Transmission electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy confirmed the successful growth of carbon dots within the Al2O3 matrix. Fluorescence spectroscopy tests indicated that the phosphorescent colors of the four CDs@Al2O3 composites were blue(454 nm), green(520 nm), orange(572 nm), and red(632 nm), with average lifetimes of 130.6, 293.6, 498.6, and 539.0 ms, respectively. The observed redshift in phosphorescent emission wavelength attributed to the decrease in the energy gap between the excited state and ground state of the carbon dots with increasing π-conjugation and number of oxygen-containing functional groups in the precursor, which achieved the modulation of multicolor phosphorescent emissions. Based on the multicolor room-temperature phosphorescent characteristics of this material, its applications in anti-counterfeiting and information encryption was preliminarily explored.

Key words

Carbon dots / Room temperature phosphorescence / Long afterglow / Al2O3

Cite this article

Download Citations
LIU Jinkun , RAN Zhun , LIU Qingqing , et al . Preparation of Carbon Dot-based Multicolor Room-temperature Phosphorescent Materials via Precursor Structure Regulation Strategies. Chemical Journal of Chinese Universities. 2025, 46(6): 193-201 https://doi.org/10.7503/cjcu20240412

References

1
Liu H. X., Zhong X., Pan Q., Zhang Y., Deng W. T., Zou G. Q., Hou H. S., Ji X. B., Coord. Chem. Rev., 2024498, 215468
2
Ðorđević L., Arcudi F., Cacioppo M., Prato M., Nat. Nanotechnol.202217(2), 112—130
3
Sun Y. Q., Liu S. T., Sun L. Y., Wu S. S., Hu G. Q., Pang X. L., Smith A., Hu C. F., Zeng S. S., Wang W. X., Nat. Commun.202011(1), 5591
4
Wareing T., Gentile P., Phan A., ACS Nano202115(10), 15471—15501
5
Li W., Zhou W., Zhou Z. S., Zhang H. R., Zhang X. J., Zhuang J. L., Liu Y. L., Lei B. F., Hu C. F., Angew. Chem. Int. Ed.2019131(22), 7356—7361
6
Li J., Zhou H., Jin S., Xu B., Teng Q., Li C. H., Li J. S., Li Q. J., Gao Z. H., Zhu C. F., Adv. Mater.202436(24), 2401493
7
Geng B. J., Hu J. Y., Li Y., Feng S. N., Pan D. Y., Feng L. Y., Shen L. X., Nat. Commun.202213(1), 5735
8
Yu X. W., Liu K. K., Wang B. L., Zhang H. Y., Qi Y. Y., Yu J. H., Adv. Mater.202335(6), 2208735
9
Wang B. Y., Lu S. Y., Matter20225(1), 110—149
10
Ran Z., Liu J. K., Zhuang J. L., Liu Y. L., Hu C. F., Small Methods20248(1), 2301013
11
Zhou S. J., Wang F. X., Feng N., Xu A. X., Sun X. F., Zhou J., Li H. G., Small202319(33), 2301240
12
Lou Q., Chen N., Zhu J. Y., Liu K. K., Li C., Zhu Y. S., Xu W., Chen X., Song Z. J., Liang C. H., Adv. Mater.202335(20), 2211858
13
Xia C. L., Zhu S. J., Zhang S. T., Zeng Q. S., Tao S. Y., Tian X. Z., Li Y. F., Yang B., ACS Appl. Mater. Interfaces202012(34), 38593—38601
14
Li Q. J., Cheng D. K., Gu H. L., Yang D. Q., Li Y. C., Meng S., Zhao Y. Y., Tang Z. K., Zhang Y. B., Tan J., Chem. Eng. J.2023462, 142339
15
Wang B. L., Mu Y., Zhang H. Y., Shi H. Z., Chen G. R., Yu Y., Yang Z. Q., Li J. Y., Yu J. H., ACS Cent. Sci.20195(2), 349—356
16
Mo L. Q., Liu H., Liu Z. M., Xu X. K., Lei B. F., Zhuang J. L., Liu Y. L., Hu C. F., Adv. Opt. Mater.202210(10), 2102666
17
He Z. G., Sun Y. D., Zhang C., Zhang J., Liu S. J., Zhang K., Lan M. H., Carbon2023204, 76—93
18
Zhang Y. Q., Chen L., Liu B., Yu S. P., Yang Y. Z., Liu X. G., Adv. Funct. Mater.202434(25), 2315366
19
Ding Z. Z., Shen C. L., Han J. F., Zheng G. S., Ni Q. C., Song R. W., Liu K. K., Zang J. H., Dong L., Lou Q., Small202319(31), 2205916
20
Wang B. Y., Waterhouse G., Lu S. Y., Trends Chem.20235(1), 76—87
21
Kumari R., Kumar A., Negi K., Sahu S., ACS Appl. Nano Mater.20236(2), 918—929
22
Shi H. X., Niu Z. J., Wang H., Ye W. P., Xi K., Huang X., Wang H. L., Liu Y. F., Lin H. W., Shi H. F., An Z. F., Chem. Sci.202213(15), 4406—4412
23
Tan J., Yi Z. Z., Ye Y. X., Ren X. D., Li Q. J., J. Lumin.2020223, 117267
24
Patra A., Dutta A., Bhaumik A., J. Hazard. Mater.2012201, 170—177
25
Sun W. X., Zhang Y. Q., Yin G. C., Lu S. Y., Adv. Funct. Mater.202434(37), 2402346
26
Liu Y. P., Wang B. Z., Zhang Y. S., Guo J., Wu X. Y., OuYang D. F., Chen S., Chen Y. Q., Wang S. P., Xing G. C., Adv. Funct. Mater.2024, 2401353
27
Ge W. Y., Zhang P. F., Zhang X. M., Gao W. X., Lu C. H., Ge Y., ACS Sustainable Chem. Eng.20219(30), 10220—10226
28
Ai L., Song Z. Q., Nie M. J., Yu J. K., Liu F. K., Song H. Q., Zhang B., Waterhouse G., Lu S.Y., Angew. Chem. Int. Ed.202362(12), e202217822
29
Li C. C., Zhao X. Y., Li C., Hu J. H., Zhu J. Y., Lou Q., Chen N., Song Z. J., Chen X., Pan G. C., J. Alloys Compd.2023948, 169674
30
Arcudi F., Đorđević L., Prato M., Angew. Chem. Int. Ed.2017129(15), 4234—4237
31
He J. L., Chen Y. H., He Y. L., Xu X. K., Lei B. F., Zhang H. R., Zhuang J. L., Hu C. F., Liu Y. L., Small202016(49), 2005228
32
Song Z. J., Liu Y. L., Lin X. M., Zhou Z. S., Zhang X. J., Zhuang J. L., Lei B. F., Hu C. F., ACS Appl. Mater. Interfaces202113(29), 34705—34713
33
Wan Z. J., Li Y. M., Zhou Y. Z., Peng D. P., Zhang X. J., Zhuang J. L., Lei B. F., Liu Y. L., Hu C. F., Adv. Funct. Mater.202333(11), 2207296
34
Han Y., Li M., Lai J. W., Li W. T., Liu Y. J., Yin L. Q., Yang L. Q., Xue X. G., Vajtai R., Ajayan P., ACS Sustainable Chem. Eng.20197(24), 19918—19924
35
Wang B. Y., Wang H. W., Hu Y. S., Waterhouse G., Lu S. Y., Nano Lett.202424(9), 2904—2911
36
Liu J. K., Luo Y. M., Ran Z., Wang F. L., Sun M. H., Luo Y. Y., Zhuang J. L., Zhang X. J., Lei B. F., Liu Y. L., Hu C. F., Chem. Eng. J.2023474, 145597
37
Zhou Z. S., Song Z. J., Liu J. K., Lei B. F., Zhuang J. L., Zhang X. J., Liu Y. L., Hu C. F., Adv. Opt. Mater.202210(1), 2100704
38
Wu Y. C., Sun L. L., Han H. H., He X. P., Cao W. G., James T., Chem. Sci.202415(2), 757—764
39
Liang P., Zheng Y. H., Zhang X. C., Wei H. P., Xu X. K., Yang X. F., Lin H. H., Hu C. F., Zhang X. J., Lei B. F., Nano Lett.202222(13), 5127—5136
40
Lu D., Lu K., Wen H. T., Wei Z., Bianco A., Wang G. G., Zhang H. Y., Small202319(31), 2207046

Funding

the Foundation for Young Talents in Higher Education of Guangdong Province, China(2019KQNCX097)
the National Natural Science Foundation of China(12174119)
the Natural Science Foundation of Guangdong Province, China(2023A1515012003)

Comments

PDF(2683 KB)

Accesses

Citation

Detail

Sections
Recommended

/