
Active Shrinkage Hydrogel Based on Red Emissive Carbon Dots Photosensitizers for Bacterial Infected Wound Healing
HAO Yongliang, LI Jian, WANG Zehua, GE Jiechao
Active Shrinkage Hydrogel Based on Red Emissive Carbon Dots Photosensitizers for Bacterial Infected Wound Healing
An active shrinkage hydrogel based on red emissive carbon dots(CDs) photosensitizers(PSs) was developed for bacterial infected wound healing. The hydrogel was prepared by using N-isopropylacrylamide (NIPAM), sodium alginate(SA) and CDs PSs as precursors through free radical polymerization and calcium ion cross-linking. The hydrogel could release CDs PSs at body temperature(37 ℃) due to the active shrinkage of the hydrogel. Upon light irradiation, the released CDs PSs can generate singlet oxygen to kill bacteria effectively in the wound site leading to rapid wound healing. In vitro and in vivo results suggest that the developed active shrinkage hydrogel has good drug release, photodynamic antibacterial effects and the ability to accelerate wound healing, thus providing a new type of hydrogel for clinical wound management.
Carbon dots / Photodynamic antibacterial / Hydrogel / Wound healing
1 |
Peate I., British J. Healthcare Assistants, 2021, 15(9), 446—451
|
2 |
Harth W., Kanerva’s Occupational Dermatology, 2020, 1209—1221
|
3 |
Nethi S. K., Das S., Patra C. R., Mukherjee S., Biomater. Sci., 2019, 7(7), 2652—2674
|
4 |
Jia Y., Zhang X., Yang W., Lin C., Tao B., Deng Z., Gao P., Yang Y., Cai K., J. Mater. Chem. B, 2022, 10(15), 2875—2888
|
5 |
Rezaie F., Momeni⁃Moghaddam M., Naderi⁃Meshkin H., Int. J. Low. Extr. Wound, 2019, 18(3), 247—261
|
6 |
Xue M., Jackson C. J., Adv. Wound. Care, 2015, 4(3), 119—136
|
7 |
Enoch S., Leaper D. J., Surgery(Oxford), 2008, 26(2), 31—37
|
8 |
Kalelkar P. P., Riddick M., García A. J., Nat. Rev. Mater, 2022, 7(1), 39—54
|
9 |
Noor A., Afzal A., Masood R., Khaliq Z., Ahmad S., Ahmad F., Qadir M.-B., Irfan M., J. Mater. Sci., 2022, 57(12), 6536—6572
|
10 |
Huangfu Y., Li S., Deng L., Zhang J., Huang P., Feng Z., Kong D., Wang W., Dong A., ACS Appl. Mater. Interfaces, 2021, 13(50), 59695—59707
|
11 |
Wang W., Jia B., Xu H., Li Z., Qiao L., Zhao Y., Huang H., Zhao X., Guo B., Chem. Eng. J, 2023, 468, 143362
|
12 |
Yuan Y., Shen S., Fan D., Biomaterials, 2021, 276, 120838
|
13 |
Sun X., Ding C., Qin M., Li J., Small, 2024, 20(11), 2306960
|
14 |
Wang Z., Du B., Gao X., Huang Y., Li M., Yu Z., Li J., Shi X., Deng Y., Liang K., Nano Today, 2022, 46, 101595
|
15 |
Chen J., Liu Y., Cheng G., Guo J., Du S., Qiu J., Wang C., Li C., Yang X., Chen T., Small, 2022, 18(27), 2201300
|
16 |
Chua M. H., Chin K. L. O., Loh X. J., Zhu Q., Xu J., ACS Nano, 2023, 17(3), 1845—1878
|
17 |
Zhu H., Zheng J., Oh X. Y., Chan C. Y., Low B. Q. L., Tor J. Q., Jiang W., Ye E., Loh X. J., Li Z., ACS Nano, 2023, 17(9), 7953—7978
|
18 |
Lee C. H., Song S. Y., Chung Y. J., Choi E. K., Jang J., Lee D. H., Kim H. D., Kim D. U., Park C. B., ACS Appl. Bio. Mater., 2022, 5(2), 761—770
|
19 |
Song W., Wang X., Nong S., Wang M., Kang S., Wang F., Xu L., Adv. Funct. Mater., 2024, 2402761
|
20 |
Ge J., Jia Q., Liu W., Lan M., Zhou B., Guo L., Zhou H., Zhang H., Wang Y., Gu Y., Meng X., Wang P., Adv. Healthc. Mater., 2016, 5(6), 665—675
|
21 |
Ge J., Lan M., Zhou B., Liu W., Guo L., Wang H., Jia Q., Niu G., Huang X., Zhou H., Meng X., Wang P., Lee C. S., Zhang W., Han X., Nat. Commun., 2014, 5, 4596
|
22 |
Chen T., Yao T., Peng H., Whittaker A. K., Li Y., Zhu S., Wang Z., Adv. Funct. Mater., 2021, 31(45), 2106079
|
23 |
Liu M., Huang L., Xu X., Wei X., Yang X., Li X., Wang B., Xu Y., Li L., Yang Z., ACS Nano, 2022, 16(6), 9479—9497
|
24 |
Mou C., Wang X., Teng J., Xie Z., Zheng M., J. Nanobiotechnology, 2022, 20(1), 368
|
25 |
Ge J., Jia Q., Liu W., Guo L., Liu Q., Lan M., Zhang H., Meng X., Wang P., Adv. Mater., 2015, 27(28), 4169—4177
|
26 |
Cheng W., Zeng X., Chen H., Li Z., Zeng W., Mei L., Zhao Y., ACS Nano, 2019, 13, 8537
|
27 |
Ge J., Lan M., Liu W., Jia Q., Guo L., Zhou B., Meng X., Niu G., Wang P., Sci. China Mater., 2016, 59(1), 12—19
|
28 |
Hu J., Wei T., Zhao H., Chen M., Tan Y., Ji Z., Jin Q., Shen J., Han Y., Yang N., Chen L., Xiao Z., Zhang H., Liu Z., Chen Q., Matter, 2021, 4(9), 2985—3000
|
29 |
Dharmasiri M. B., Mudiyanselage T. K., Polym. Bull., 2021, 78, 3183—3198
|
30 |
Xiao L., Feng M., Chen C., Xiao Q., Cui Y., Zhang Y., Adv. Mater., 2023, 2304982
|
31 |
Wang Y., Chen P., Liu W., Wei X., Zhang J., Wei X., Liu Y., Rao L., Zhang S., Yu J., Ye X., Wang J., Gu Z., Nano Today, 2023, 51, 101937
|
32 |
Sun J., Jia W., Qi H., Huo J., Liao X., Xu Y., Wang J., Sun Z., Liu Y., Liu J., Zhen M., Wang C., Bai C., Adv. Mater., 2024, 2312440
|
33 |
Shou Y., Le Z., Cheng H. S., Liu Q., Ng Y. Z., Becker D. L., Li X., Liu L., Xue C., Yeo N. J. Y., Tan R., Low J., Kumar A. R. K., Wu K. Z., Li H., Cheung C., Lim C. T., Tan N. S., Chen Y., Liu Z., Tay A., Adv. Mater., 2023, 35(47), 2304638
|
/
〈 |
|
〉 |