
Aggregation Regulation-assisted Multicolor Carbon Nanodots Fluorescent Phosphor
LAI Xiaonan, SHEN Chenglong, SHAN Chongxin
Aggregation Regulation-assisted Multicolor Carbon Nanodots Fluorescent Phosphor
Carbon nanodots(CDs) with concentration-dependent fluorescence were synthesized with citric acid and urea as precursors in N,N-dimethylformamide through solvothermal strategy. The CDs solution was diluted with deionized water at various ratios. The energy transfer between the CDs particles gradually weakened when the dilution ratio increased, leading to a shift in fluorescence color from red to blue and an enhancement in emission intensity. A systematic investigation on the concentration effects on the fluorescence emission properties of CDs were conducted with a chromatography separation techniques, revealing that the as-prepared CDs solution contained the multicolor components and the fluorescence variations in CDs solutions were attributed to Förster resonance energy transfer and reabsorption energy transfer. Thus, the precise regulation of multicolor CDs phosphors was further achieved with the starch as confined matrix to regulate the energy transfer between CDs. These findings present a new strategy to regulate the optical properties of CDs and pave a new insight the applications of fluorescence labeling and display technology.
Carbon nanodots / Multicolor / Fluorescence / Aggregation regulation / Phosphors
1 |
Shi Y., Su W., Yuan F., Yuan T., Song X., Han Y., Wei S., Zhang Y., Li Y., Li X., Fan L., Adv. Mater., 2023, 35(44), 2210699
|
2 |
Li L., Dong T. J., Mater. Chem. C, 2018, 6, 7944—7970
|
3 |
Xia C., Zhu S., Feng T., Yang M., Yang B., Adv. Sci., 2019, 6(23), 1901316
|
4 |
Ghosh D., Sarkar K., Devi P., Kim K. H., Kumar, P., Renew. Sust. Energy Rev., 2021, 135, 110391
|
5 |
Shen C. L., Lou Q., Liu K. K., Dong L., Shan C. X., Nano Today, 2020, 35, 100954
|
6 |
Omar N. A. S., Fen Y. W., Irmawati R., Hashim H. S., Ramdzan N. S. M., Fauzi N. I. M., Nanomaterials, 2022, 12(14), 2365
|
7 |
Ghaffarkhah A., Hosseini E., Kamkar M., Sehat A. A., Dordanihaghighi S., Allahbakhsh A., van der Kuur C., Arjmand M., Small, 2022, 18(2), 2102683
|
8 |
Tan J., Li Q., Meng S., Li Y., Yang J., Ye Y., Tang Z., Qu S., Ren X., Adv. Mater., 2021, 33(16), 2006781
|
9 |
Lim S. Y., Shen W., Gao, Z., Chem. Soc. Rev., 2015, 44(1), 362—381
|
10 |
Zhang J., Chen X., Li Y., Han S., Du Y., Liu H., Anal. Methods, 2018, 10(5), 541—547
|
11 |
Fan X., Su Y., Deng D., Lv Y., RSC Adv., 2016, 6(80), 76890—76896
|
12 |
Zhao W. B., Liu K. K., Song S. Y., Zhou R., Shan C. X., Nanoscale Res. Lett., 2019, 14(1), 130
|
13 |
Shen C. L., Su L. X., Zang J. H., Li X. J., Lou Q., Shan C. X., Nanoscale Res. Lett., 2017, 12(1), 447
|
14 |
Bao R., Wang C., Dong L., Shen C., Zhao K., Pan C., Nanoscale, 2016, 8(15), 8078—8082
|
15 |
Lai S., Jin Y., Shi L., Zhou R., Zhou Y., An D., Nanoscale, 2020, 12(2), 591—601
|
16 |
Song R. W., Shen C. L., Zheng G. S., Ni Q. C., Liu K. K., Zang J. H., Dong L., Lou Q., Shan C. X., Nano Lett., 2023, 23(24), 11669—11677
|
17 |
Yang H., Liu Y., Guo Z., Lei B., Zhuang J., Zhang X., Liu Z., Hu C., Nat. Commun., 2019, 10(1), 1789
|
18 |
Strauss V., Wang H., Delacroix S., Ledendecker M., Wessig P., Chem. Sci., 2020, 11(31), 8256—8266
|
19 |
Siddique A. B., Hossain S. M., Pramanick A. K., Ray M., Nanoscale, 2021, 13(39), 16662—16671
|
20 |
Sk M. A., Ananthanarayanan A., Huang L., Lim K. H., Chen P., J. Mater. Chem. C, 2014, 2(34), 6954—6960
|
21 |
Liu Y., Han S., New J. Chem., 2018, 42(1), 388—394
|
22 |
Chen P. C., Chen Y. N., Hsu P. C., Shih C. C., Chang H. T., Chem. Commun., 2013, 49(16), 1639—1641
|
23 |
Qu S., Zhou D., Li D., Ji W., Jing P., Han D., Liu L., Zeng H., Shen D., Adv. Mater., 2016, 28(18), 3516—3521
|
24 |
Kang C., Prodanov M. F., Gao Y., Mallem K., Yuan Z., Vashchenko V. V., Srivastava A. K., Adv. Mater., 2021, 33(49), 2104685
|
25 |
Ding H., Yu S. B., Wei J. S., Xiong H. M., ACS Nano, 2016, 10(1), 484—491
|
26 |
Shen R., He T., Yao S., Zhang Y., Peng T., Tan W., Chen N., Yuan Q., Small Methods, 2024, 8(12), 122400439
|
27 |
Zhu S., Song Y., Zhao X., Shao J., Zhang J., Yang B., Nano Res., 2015, 8(2), 355—381
|
28 |
Zheng M., Wang Y., Hu D., Tian M., Wei Y., Yuan J., Aggregate, 2024, 5(6), e624
|
29 |
Dimos K., Curr. Org. Chem., 2016, 20(6), 682—695
|
30 |
Chen Y., Lian H., Wei Y., He X., Chen Y., Wang B., Zeng Q., Lin J., Nanoscale, 2018, 10(14), 6734—6743
|
31 |
Mintz K. J., Zhou Y., Leblanc R. M., Nanoscale, 2019, 11(11), 4634—4652
|
32 |
Zhong J., Zhu Y., Xing M., Li M., Wu R., Zhang L., Guan W., Luminescence, 2024, 39(7), e4827
|
/
〈 |
|
〉 |