Aggregation Regulation-assisted Multicolor Carbon Nanodots Fluorescent Phosphor

LAI Xiaonan, SHEN Chenglong, SHAN Chongxin

PDF(2566 KB)
PDF(2566 KB)
Chem J Chin Univ ›› 2025, Vol. 46 ›› Issue (6) : 76-83. DOI: 10.7503/cjcu20240407
Article

Aggregation Regulation-assisted Multicolor Carbon Nanodots Fluorescent Phosphor

Author information +
History +

Abstract

Carbon nanodots(CDs) with concentration-dependent fluorescence were synthesized with citric acid and urea as precursors in NN-dimethylformamide through solvothermal strategy. The CDs solution was diluted with deionized water at various ratios. The energy transfer between the CDs particles gradually weakened when the dilution ratio increased, leading to a shift in fluorescence color from red to blue and an enhancement in emission intensity. A systematic investigation on the concentration effects on the fluorescence emission properties of CDs were conducted with a chromatography separation techniques, revealing that the as-prepared CDs solution contained the multicolor components and the fluorescence variations in CDs solutions were attributed to Förster resonance energy transfer and reabsorption energy transfer. Thus, the precise regulation of multicolor CDs phosphors was further achieved with the starch as confined matrix to regulate the energy transfer between CDs. These findings present a new strategy to regulate the optical properties of CDs and pave a new insight the applications of fluorescence labeling and display technology.

Key words

Carbon nanodots / Multicolor / Fluorescence / Aggregation regulation / Phosphors

Cite this article

Download Citations
LAI Xiaonan , SHEN Chenglong , SHAN Chongxin. Aggregation Regulation-assisted Multicolor Carbon Nanodots Fluorescent Phosphor. Chemical Journal of Chinese Universities. 2025, 46(6): 76-83 https://doi.org/10.7503/cjcu20240407

References

1
Shi Y., Su W., Yuan F., Yuan T., Song X., Han Y., Wei S., Zhang Y., Li Y., Li X., Fan L., Adv. Mater.202335(44), 2210699
2
Li L., Dong T. J., Mater. Chem. C20186, 7944—7970
3
Xia C., Zhu S., Feng T., Yang M., Yang B., Adv. Sci.2019, 6(23), 1901316
4
Ghosh D., Sarkar K., Devi P., Kim K. H., Kumar, P., Renew. Sust. Energy Rev.2021135, 110391
5
Shen C. L., Lou Q., Liu K. K., Dong L., Shan C. X., Nano Today202035, 100954
6
Omar N. A. S., Fen Y. W., Irmawati R., Hashim H. S., Ramdzan N. S. M., Fauzi N. I. M., Nanomaterials202212(14), 2365
7
Ghaffarkhah A., Hosseini E., Kamkar M., Sehat A. A., Dordanihaghighi S., Allahbakhsh A., van der Kuur C., Arjmand M., Small202218(2), 2102683
8
Tan J., Li Q., Meng S., Li Y., Yang J., Ye Y., Tang Z., Qu S., Ren X., Adv. Mater.202133(16), 2006781
9
Lim S. Y., Shen W., Gao, Z., Chem. Soc. Rev.201544(1), 362—381
10
Zhang J., Chen X., Li Y., Han S., Du Y., Liu H., Anal. Methods201810(5), 541—547
11
Fan X., Su Y., Deng D., Lv Y., RSC Adv.20166(80), 76890—76896
12
Zhao W. B., Liu K. K., Song S. Y., Zhou R., Shan C. X., Nanoscale Res. Lett.201914(1), 130
13
Shen C. L., Su L. X., Zang J. H., Li X. J., Lou Q., Shan C. X., Nanoscale Res. Lett.201712(1), 447
14
Bao R., Wang C., Dong L., Shen C., Zhao K., Pan C., Nanoscale20168(15), 8078—8082
15
Lai S., Jin Y., Shi L., Zhou R., Zhou Y., An D., Nanoscale202012(2), 591—601
16
Song R. W., Shen C. L., Zheng G. S., Ni Q. C., Liu K. K., Zang J. H., Dong L., Lou Q., Shan C. X., Nano Lett.202323(24), 11669—11677
17
Yang H., Liu Y., Guo Z., Lei B., Zhuang J., Zhang X., Liu Z., Hu C., Nat. Commun.201910(1), 1789
18
Strauss V., Wang H., Delacroix S., Ledendecker M., Wessig P., Chem. Sci.202011(31), 8256—8266
19
Siddique A. B., Hossain S. M., Pramanick A. K., Ray M., Nanoscale202113(39), 16662—16671
20
Sk M. A., Ananthanarayanan A., Huang L., Lim K. H., Chen P., J. Mater. Chem. C20142(34), 6954—6960
21
Liu Y., Han S., New J. Chem.201842(1), 388—394
22
Chen P. C., Chen Y. N., Hsu P. C., Shih C. C., Chang H. T., Chem. Commun.201349(16), 1639—1641
23
Qu S., Zhou D., Li D., Ji W., Jing P., Han D., Liu L., Zeng H., Shen D., Adv. Mater.201628(18), 3516—3521
24
Kang C., Prodanov M. F., Gao Y., Mallem K., Yuan Z., Vashchenko V. V., Srivastava A. K., Adv. Mater., 202133(49), 2104685
25
Ding H., Yu S. B., Wei J. S., Xiong H. M., ACS Nano201610(1), 484—491
26
Shen R., He T., Yao S., Zhang Y., Peng T., Tan W., Chen N., Yuan Q., Small Methods20248(12), 122400439
27
Zhu S., Song Y., Zhao X., Shao J., Zhang J., Yang B., Nano Res.20158(2), 355—381
28
Zheng M., Wang Y., Hu D., Tian M., Wei Y., Yuan J., Aggregate20245(6), e624
29
Dimos K., Curr. Org. Chem.201620(6), 682—695
30
Chen Y., Lian H., Wei Y., He X., Chen Y., Wang B., Zeng Q., Lin J., Nanoscale201810(14), 6734—6743
31
Mintz K. J., Zhou Y., Leblanc R. M., Nanoscale201911(11), 4634—4652
32
Zhong J., Zhu Y., Xing M., Li M., Wu R., Zhang L., Guan W., Luminescence202439(7), e4827

Funding

the National Natural Science Foundation of China(62204223)
the China Postdoctoral Science Foundation(2022TQ0307)
the Natural Science Foundation of Henan Province, China(222102310664)

Comments

PDF(2566 KB)

Accesses

Citation

Detail

Sections
Recommended

/