
Ordered Lithium Deposition on Lithium Metal Anode Controlled by Boron-doped Carbon Dots from Solid-state Synthesis
NI Jiawen, HUANG Zunhui, SONG Tianbing, MA Qianli, HE Tianle, ZHANG Xirong, XIONG Huanming
Ordered Lithium Deposition on Lithium Metal Anode Controlled by Boron-doped Carbon Dots from Solid-state Synthesis
Boron-doped carbon dots(B-CDs) synthesized via solid-phase method were employed as electrolyte additives for lithium metal batteries. The carbon dots were prepared through the catalytic pyrolysis of carbon sources in air, highlighting high yield, efficiency, safety, and convenience. Synthesized from 1,3,5-trihydroxy-benzen and boric acid, the B-CDs exhibited excellent dispersibility in carbonate-based electrolytes. The doped boron atoms, serving as electron-deficient centers, could engage fluorinated anion groups through Lewis acid-base interactions, thus inducing uniform lithium-ion deposition on the lithium anode. At an additive concentration of 0.3 mg/mL, a lithium symmetric cell demonstrated stable cycling for 2500 h under a current density of 0.5 mA/cm2 and a plating capacity of 0.5 mA·h/cm2, indicating that the carbon dot additive significantly enhanced the reversibility of lithium deposition/dissolution. When these carbon dots were incorporated into electrolytes of a LiFePO4 full cell, an initial capacity of 144.4 mA·h/g was achieved, with a capacity retention of 95.1% after 100 cycles.
Carbon dots / Boron doping / Electrochemical energy storage / Electrolyte additive / Lithium metal anode
1 |
Zhao X. Y., Wang J. L., Yan X. D., Zhang L. Z., Chem. J. Chinese Universities, 2019, 40(6), 1258—1264
赵欣悦, 汪靖伦, 闫晓丹, 张灵志. 高等学校化学学报, 2019, 40(6), 1258—1264
|
2 |
Ai S. J., Zong C. X., Wu W., Feng J. J., Jin C., Fu F. Z., Liu J., Sun D. L., Zheng Q., Guo Y. P., Chem. J. Chinese Universities, 2018, 39(11), 2520—2528
艾淑娟, 宗成星, 吴为, 冯京京, 金灿, 付凤至, 刘靖, 孙冬兰, 郑琴, 郭也平. 高等学校化学学报, 2018, 39(11), 2520—2528
|
3 |
Wang F. C., Zhou W. L., Chem. J. Chinese Universities, 2018, 39(11), 2529—2533
王凤春, 周万里. 高等学校化学学报, 2018, 39(11), 2529—2533
|
4 |
Li S., Luo Z., Li L., Hu J., Zou G., Hou H., Ji X., Energy Storage Mater., 2020, 32, 306—319
|
5 |
Cha J., Han J. G., Hwang J., Cho J., Choi N. S., J. Power Sources, 2017, 357, 97—106
|
6 |
Li L., Wang D., Xu G., Zhou Q., Ma J., Zhang J., Du A., Cui Z., Zhou X., Cui G., J. Energy Chem., 2022, 65, 280—292
|
7 |
Wei J. S., Zhu Z. Y., Zhao X., Song T. B., Huang J. H., Zhang Y. X., Liu X., Chen L., Niu X. Q., Wang Y. G., Xiong H. M., Chem. Eng. J., 2021, 425, 130660
|
8 |
Song T. B., Ma Q. L., Zhang X. R., Ni J. W., He T. L., Xiong H. M., Chem. Eng. J., 2023, 471, 144735
|
9 |
Song T. B., Huang Z. H., Niu X. Q., Zhang X. R., Wei J. S., Xiong H. M., ChemSusChem, 2022, 15(6), e202102390
|
10 |
Huang Z. H., Wei J. S., Song T. B., Ni J. W., Wang F., Xiong H. M., SmartMat, 2022, 3(2), 323—336
|
11 |
Guo R. T., Li L., Wang B. W., Xiang Y. E., Zou G. Q., Zhu Y. R., Hou H. S., Ji X. B., Energy Storage Mater., 2021, 37, 8—39
|
12 |
Wang S. Y., Jing W., Chang J. W., Lu S. Y., Chem. J. Chinese Universities, 2023, 44(5), 20220733
王斯阳, 敬稳, 常江伟, 卢思宇. 高等学校化学学报, 2023, 44(5), 20220733
|
13 |
Wu Z. F., Sun Z. N., Xiong H. M., Chin. J. Chem., 2023, 41(16), 2035—2046
|
14 |
Hong D., Choi Y., Ryu J., Mun J., Choi W., Park M., Lee Y., Choi N. S., Lee G., Kim B. S., Park S., J. Mater. Chem. A, 2019, 7(35), 20325—20334
|
15 |
Wang W. C., Song Y. H., Yang G. D., Jiao R., Zhang J. Y., Wu X. L., Zhang J. P., Li Y. F., Tong C. Y., Sun H. Z., Small, 2023, e2206597
|
16 |
Hu Y., Chen W., Lei T. Y., Jiao Y., Wang H. B., Wang X. P., Rao G. F., Wang X. F., Chen B., Xiong J., Nano Energy, 2020, 68, 104373
|
17 |
Li S., Luo Z., Tu H. Y., Zhang H., Deng W. N., Zou G. Q., Hou H. S., Ji X. B., Energy Storage Mater., 2021, 42, 679—686
|
18 |
Song T. B., Huang Z. H., Zhang X. R., Ni J. W., Xiong H. M., Small, 2023, e2205558
|
19 |
Song T. B., Huang Z. H., Niu X. Q., Liu J., Wei J. S., Chen X. B., Xiong H. M., ChemNanoMat, 2020, 6(10), 1421—1436
|
20 |
Qu S. N., Zhou D., Li D., Ji W. Y., Jing P. T., Han D., Liu L., Zeng H. B., Shen D. Z., Adv. Mater., 2016, 28(18), 3516—3521
|
21 |
Dong X. Y., Niu X. Q., Wei J. S., Xiong H. M., Chem. J. Chinese Universities, 2019, 40(6), 1288—1292
董向阳, 牛晓青, 魏济时, 熊焕明. 高等学校化学学报, 2019, 40(6), 1288—1292
|
22 |
Tu H. Y., Li S., Luo Z., Xu L. Q., Zhang H., Xiang Y. E., Deng W. T., Zou G. Q., Hou H. S., Ji X. B., Chem. Commun.(Camb), 2022, 58(44), 6449—6452
|
23 |
Niu X. Q., Song T. B., Xiong H. M., Chin. Chem. Lett., 2021, 32(6), 1953—1956
|
24 |
Lei W., Portehault D., Dimova R., Antonietti M., J. Am. Chem. Soc., 2011, 133(18), 7121—7127
|
25 |
Li W., Zhou W., Zhou Z. S., Zhang H. R., Zhang X. J., Zhuang J. L., Liu Y. L., Lei B. F., Hu C. F., Angew Chem. Int. Ed., 2019, 58(22), 7278—7283
|
26 |
Kim K. H., Ahn H. J., Int. J.Energy Res., 2022, 46(6), 8367—8375
|
27 |
Chang Y. N., Li J. W., Ma J., Liu Y., Xing R., Wang Y. Q., Zhang G. X., Sci. China Mater., 2022, 65(5), 1276—1284
|
28 |
Cabo-Fernandez L., Neale A. R., Braga F., Sazanovich I. V., Kostecki R., Hardwick L. J., Phys. Chem. Chem. Phys., 2019, 21(43), 23833—23842
|
29 |
Chen Y. M., Hsu S. T., Tseng Y. H., Yeh T. F., Hou S. S., Jan J. S., Lee Y. L., Teng H., Small, 2018, 14(12), e1703571
|
30 |
Prakash Reddy V., Blanco M., Bugga R., J. Power Sources, 2014, 247, 813—820
|
31 |
Qin Y., Chen Z. H., Lee H. S., Yang X. Q., Amine K., J. Phys. Chem. C, 2010, 114(35), 15202—15206
|
32 |
Wu H. Y., Qin M. L., Li X. L., Cao Z. Q., Jia B. R., Zhang Z. L., Zhang D. Y., Qu X. H., Volinsky A. A., Electrochim. Acta, 2016, 206, 301—306
|
33 |
Takamatsu D., Koyama Y., Orikasa Y., Mori S., Nakatsutsumi T., Hirano T., Tanida H., Arai H., Uchimoto Y., Ogumi Z., J. Electrochem. Soc., 2014, 161(9), A1447
|
/
〈 |
|
〉 |