
Antioxidative Carbon Dots Improving Acute Liver Injury Induced by Acetaminophen
LI Yan, CAI Hao, BI Hong
Antioxidative Carbon Dots Improving Acute Liver Injury Induced by Acetaminophen
Acetaminophen(APAP) is a drug used to treat headaches and fever symptoms, and its metabolites deplete glutathione(GSH) in the liver and cause oxidative stress. Taking large amounts of APAP in a short period of time can lead to liver failure. Yellow-emissive carbon dots(D-CDs) with strong antioxidant ability and good biocompatibility were synthesized by one-step hydrothermal method using catechol(CAT) and 2,5-dihydroxyterephthalic acid(DHTA) as precursors. In the APAP-induced zebrafish liver injury model, in vivo imaging showed that D-CDs could be effectively enriched in the zebrafish liver. The superoxide dismutase(SOD) activity and GSH content was increased and the content of malondialdehyde(MDA) was reduced, which finally effectively improved APAP- induced oxidative stress injury in zebrafish.
Carbon dots / Antioxidant / Acetaminophen / Liver injury / Zebrafish
1 |
Li J., Highlights Bus. Econ. Manag., 2023, 15, 58—63
|
2 |
Lee W. M., J. Hepatol., 2017, 67(6), 1324—1331
|
3 |
Chowdhury A., Nabila J., Temitope I. A., Sicen W., Pharmacol. Res., 2020, 161, 105102
|
4 |
Bernal W., Auzinger G., Dhawan A., Wendon J., Lancet, 2010, 376(9736), 190—201
|
5 |
Zhang J., Song Q., Han X., Zhang, Y., Zhang, Y., Zhang, X., Chu, X., Zhang, F., Chu, L., Int. Immunopharmacol., 2017, 47, 95—105
|
6 |
Wu Y. L., Jiang Y. Z., Jin X. J., Lian L. H., Piao J. Y., Wan Y., Jin H. R., Lee J. J., Nan J. X., Phytomedicine, 2010, 17(6), 475—479
|
7 |
Yao B., Huang H., Liu Y., Kang Z. H., Trends. Chem., 2019, 1(2), 235—246
|
8 |
Xia C., Zhu S., Feng T., Yang M., Yang B., Adv. Sci., 2019, 6(23), 1901316
|
9 |
Ðorđević L., Arcudi F., Cacioppo M., Prato M., Nat. Nanotechnol., 2022, 17, 112—130
|
10 |
Döring A., Ushakova E., Rogach A. L., Light Sci. Appl., 2022, 11, 75
|
11 |
Xu X., Ray R., Gu Y., Ploehn H. J., Gearheart L., Raker K., Scrivens W. A., J. Am. Chem. Soc., 2004, 126(40), 12736—12737
|
12 |
Christensen I. L., Sun Y. P., Juzenas P., J. Biomed. Nanotechnol., 2011, 7(5), 667—676
|
13 |
Chong Y., Ge C., Fang G., Tian X., Ma X., Wen T., Wamer W. G., Chen C., Chai Z., Yin J. J., ACS Nano, 2016, 10(9), 8690—8699
|
14 |
Wang L., Li Y., Zhao L., Qi Z., Gou J., Zhang S., Zhang J. Z., Nanoscale, 2020, 12(38), 19516—19535
|
15 |
Li F., Li T., Sun C., Xia J., Jiao Y., Xu H., Angew. Chem. Int. Ed., 2017, 56(33), 9910—9914
|
16 |
Rizzo C., Arcudi F., Đorđević L., Dintcheva N. T., Noto R., D’Anna F., Prato M., ACS Nano, 2018, 12(2), 1296—1305
|
17 |
Jiao Y., Liu Y., Meng Y., Gao Y., Lu W., Liu Y., Gong X., Shuang S., Dong C., ACS Sustainable Chem. Eng., 2020, 8(23), 8585—8592
|
18 |
Gong J., Liu Q., Cai L., Yang Q., Tong Y., Chen X., Kotha S., Mao X., He W., ACS Sustainable Chem. Eng., 2023, 11(10), 4237—4247
|
19 |
Miao Z., Huang D., Wang Y., Li W. J., Fan L., Wang J., Ma Y., Zhao Q., Zha Z., Adv. Funct. Mater., 2020, 30(40), 2001593
|
20 |
Chen J., Zhang M., Xu Z., Ma R., Shi Q., Sci. Total. Environ., 2023, 896, 165136
|
21 |
Zhu S., Meng Q., Wang L., Zhang J., Song Y., Jin H., Zhang K., Sun H., Wang H., Yang B., Angew. Chem. Int. Ed., 2013, 52(14), 3953—3957
|
22 |
Yuan F., Wang Z., Li X., Li Y., Tan Z., Fan L., Yang S., Adv. Mater., 2017, 29(3), 1604436
|
23 |
Kumar V. B., Mirsky S. K., Shaked N. T., Gazit E., ACS Nano, 2024, 18(3), 2421—2433
|
24 |
Zheng K., Li X., Chen M., Gong Y., Tang A., Wang Z., Wei Z., Guan L., Teng F., Chem. Eng. J., 2020, 380, 122503
|
25 |
Li W., Wang X., Lin J., Meng X., Wang L., Wang M., Jing Q., Song Y., Vomiero A., Zhao H., Nano Energy, 2024, 122, 109289
|
26 |
Ci Q., Wang Y., Wu B., Coy E., Li J. J., Jiang D., Zhang P., Wang G., Adv. Sci., 2023, 10(7), 2206271
|
27 |
Ren J., Weber F., Weigert F., Wang Y., Choudhury S., Xiao J., Lauermann I., Resch-Genger U., Bande A., Petit T., Nanoscale, 2019, 11(4), 2056—2064
|
28 |
Cao L., Zan M., Chen F., Kou X., Liu Y., Wang P., Mei Q., Hou Z., Dong W. F., Li L., Carbon, 2022, 194, 42—51
|
29 |
Das P., Sherazee M., Marvi P. K., Ahmed S. R., Gedanken A., Srinivasan S., Rajabzadeh A. R., ACS Appl. Mater. Interfaces, 2023, 15(24), 29425—29439
|
30 |
Innocenzi P., Stagi L., Nano Today, 2023, 50, 101837
|
31 |
Liu C., Fan W., Cheng W. X., Gu Y., Chen Y., Zhou W., Yu X. F., Chen M., Zhu M., Fan K., Luo Q. Y., Adv. Funct. Mater., 2023, 33(19), 2213856
|
32 |
Yao L., Zhao M. M., Luo Q. W., Zhang Y. C., Liu T. T., Yang Z., Liao M., Tu P., Zeng K. W., ACS Nano, 2022, 16(6), 9228—9239
|
33 |
Dong C., Wang S., Ma M., Wei P., Chen Y., Wu A., Zha Z., Bi H., Appl. Mater. Today, 2021, 25, 101178
|
34 |
Wang S., Bao J., Li J., Li W., Tian M., Qiu C., Pang F., Li X., Yang J., Hu Y., Wang S., Jin H., Molecules, 2022, 27(9), 2647
|
感谢安徽大学杂化材料结构与功能调控教育部重点实验室和绿色高分子材料安徽省重点实验室的支持.
/
〈 |
|
〉 |