
红光发射线粒体靶向铁掺杂碳点通过类过氧化物酶活性诱导铁死亡进行肿瘤治疗
薛小矿, 李建, 梁焕仪, 王一颖, 葛介超
红光发射线粒体靶向铁掺杂碳点通过类过氧化物酶活性诱导铁死亡进行肿瘤治疗
Red-emissive Mitochondria-targeting Iron-doped Carbon Dots for Tumor Therapy via Peroxidase-mimicking Activity-induced Ferroptosis
合成了具有强类过氧化物酶活性的铁掺杂碳点(Fe-CDs), 将其用于肿瘤特异性治疗. Fe-CDs固有的 红色荧光能够实现高对比度的细胞成像, 表明其聚集在线粒体. 在富含过氧化氢(H₂O₂)的酸性肿瘤微环境中, Fe-CDs能催化羟基自由基(•OH)生成, 诱导脂质过氧化, 最终触发铁死亡. 体内外实验均表明, Fe-CDs对肿瘤生长具有显著的抑制作用. 此外, Fe-CDs表现出优异的生物相容性, 未见明显的全身毒性. 通过结合荧光成像与催化治疗, 本研究为肿瘤治疗和铁死亡研究提供了一个有前景的新策略.
In this work, iron-doped carbon dots(Fe-CDs) with strong peroxidase-mimicking activity were synthesized for tumor-specific therapy. Their intrinsic red fluorescence enabled high-contrast cellular imaging, revealing preferential mitochondrial accumulation. In the acidic and hydrogen peroxide(H₂O₂)-rich tumor microenvironment, Fe-CDs catalyzed hydroxyl radical(•OH) generation, inducing oxidative stress and lipid peroxidation, ultimately triggering ferroptosis. In vitro and in vivo studies demonstrated potent tumor inhibition. Furthermore, Fe-CDs exhibited excellent biocompatibility with no significant systemic toxicity. By integrating fluorescence imaging and catalytic therapy, this study presents a promising nanoplatform for tumor treatment and ferroptosis research.
Carbon dots / Nanozyme / Mitochondria-targeting / Ferroptosis / Tumor therapy
1 |
Gao L., Zhuang J., Nie L., Zhang J., Zhang Y., Gu N., Wang T., Feng J., Yang D., Perrett S., Yan X., Nature Nanotechnology, 2007, 2(9), 577—583
|
2 |
Gao L., Wei H., Dong S., Yan X., Advanced Materials, 2024, 36(10), 2305249
|
3 |
Gao S., Lin H., Zhang H., Yao H., Chen Y., Shi J., Advanced Science, 2019, 6(3), 1801733
|
4 |
Yang B., Shi J., Journal of the American Chemical Society, 2020, 142(52), 21775—21785
|
5 |
Wang M., Huang G., You Z., Jia R., Zhong Y., Bai F., Chem. Res. Chinese Universities, 2023, 39(4), 612—623
|
6 |
Wang W., Luo Q., Li J., Li L., Li Y., Huo X., Du X., Li Z., Wang N., Advanced Functional Materials, 2022, 32(36), 2205461
|
7 |
Liu B., Liu J., Nano Research, 2017, 10(4), 1125—1148
|
8 |
Huang L., Chen J., Gan L., Wang J., Dong S., Science Advances, 2019, 5(5), eaav5490
|
9 |
Cao M., Xing X., Shen X., Ouyang J., Na N., Chem. Res. Chinese Universities, 2024, 40(2), 202—212
|
10 |
Huo M., Wang L., Wang Y., Chen Y., Shi J., ACS Nano, 2019, 13(2), 2643—2653
|
11 |
Fan K., Xi J., Fan L., Wang P., Zhu C., Tang Y., Xu X., Liang M., Jiang B., Yan X., Gao L., Nature Communications, 2018, 9(1), 1440
|
12 |
Otasevic V., Vucetic M., Grigorov I., Martinovic V., Stancic A., Oxidative Medicine and Cellular Longevity, 2021, 2021(1), 5537330
|
13 |
Xie Y., Hou W., Song X., Yu Y., Huang J., Sun X., Kang R., Tang D., Cell Death & Differentiation, 2016, 23(3), 369—379
|
14 |
Dixon S. J., Lemberg K. M., Lamprecht M. R., Skouta R., Zaitsev E. M., Gleason C. E., Patel D. N., Bauer A. J., Cantley A. M., Yang W. S., Morrison B., Stockwell B. R., Cell, 2012, 149(5), 1060—1072
|
15 |
Wang H., Lin D., Yu Q., Li Z., Lenahan C., Dong Y., Wei Q., Shao A., Frontiers in Cell and Developmental Biology, 2021, 9, 629150
|
16 |
Chen X., Comish P. B., Tang D., Kang R., Frontiers in Cell and Developmental Biology, 2021, 9, 637162
|
17 |
Wu A., Han M., Ding H., Rao H., Lu Z., Sun M., Wang Y., Chen Y., Zhang Y., Wang X., Chen D., Chemical Engineering Journal, 2023, 474, 145920
|
18 |
Ragazzon G., Cadranel A., Ushakova E. V., Wang Y., Guldi D. M., Rogach A. L., Kotov N. A., Prato M., Chem, 2021, 7(3), 606—628
|
19 |
Shi Y., Xu H., Yuan T., Meng T., Wu H., Chang J., Wang H., Song X., Li Y., Li X., Zhang Y., Xie W., Fan L., Aggregate, 2022, 3(3), e108
|
20 |
Wang B., Lu S., Matter, 2022, 5(1), 110—149
|
21 |
Hussain M. M., Khan W. U., Ahmed F., Wei Y., Xiong H., Chemical Engineering Journal, 2023, 465, 143010
|
22 |
Li J., Yang S., Deng Y., Chai P., Yang Y., He X., Xie X., Kang Z., Ding G., Zhou H., Fan X., Advanced Functional Materials, 2018, 28(30), 1870206
|
23 |
Xia C., Zhu S., Feng T., Yang M., Yang B., Advanced Science, 2019, 6(23), 1901316
|
24 |
Nan F., Xue X., Li J., Liang K., Wang J., Yu W. W., Ge J., Wang P., Science China Materials, 2024, 67(11), 3742—3752
|
25 |
Wang X., Lu Y., Hua K., Yang D., Yang Y., Analytical and Bioanalytical Chemistry, 2021, 413(5), 1373—1382
|
26 |
Yang M., Li H., Liu X., Huang L., Zhang B., Liu K., Xie W., Cui J., Li D., Lu L., Sun H., Yang B., Journal of Nanobiotechnology, 2023, 21(1), 431
|
27 |
Deng Z., Qian Y., Yu Y., Liu G., Hu J., Zhang G., Liu S., Journal of the American Chemical Society, 2016, 138(33), 10452—10466
|
28 |
Nan F., Jia Q., Xue X., Wang S., Liu W., Wang J., Ge J., Wang P., Biomaterials, 2022, 284, 121495
|
29 |
Lu S., Sui L., Liu J., Zhu S., Chen A., Jin M., Yang B., Advanced Materials, 2017, 29(15), 1603443
|
30 |
Li J., Wang J., Liang K., Xue X., Chen T., Gao Z., Ren H., Gao L., Ge J., Chemical Engineering Journal, 2024, 500, 157033
|
31 |
Yang Y., Xu J., Zhou R., Qin Z., Liao C., Shi S., Chen Y., Guo Y., Zhang S., Carbon, 2024, 219, 118831
|
32 |
Xie M., Li F., Li Y., Qian K., Liang Y., Lei B., Liu Y., Cui J., Xiao Y., Chemical Engineering Journal, 2025, 506, 159956
|
33 |
Jiang B., Duan D., Gao L., Zhou M., Fan K., Tang Y., Xi J., Bi Y., Tong Z., Gao G. F., Xie N., Tang A., Nie G., Liang M., Yan X., Nature Protocols, 2018, 13(7), 1506—1520
|
34 |
Huo M., Wang L., Chen Y., Shi J., Nature Communications, 2017, 8(1), 357
|
/
〈 |
|
〉 |