红光发射线粒体靶向铁掺杂碳点通过类过氧化物酶活性诱导铁死亡进行肿瘤治疗

薛小矿, 李建, 梁焕仪, 王一颖, 葛介超

PDF(3003 KB)
PDF(3003 KB)
高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (6) : 171-183. DOI: 10.7503/cjcu20250094
研究论文

红光发射线粒体靶向铁掺杂碳点通过类过氧化物酶活性诱导铁死亡进行肿瘤治疗

作者信息 +

Red-emissive Mitochondria-targeting Iron-doped Carbon Dots for Tumor Therapy via Peroxidase-mimicking Activity-induced Ferroptosis

Author information +
History +

摘要

合成了具有强类过氧化物酶活性的铁掺杂碳点(Fe-CDs), 将其用于肿瘤特异性治疗. Fe-CDs固有的 红色荧光能够实现高对比度的细胞成像, 表明其聚集在线粒体. 在富含过氧化氢(H₂O₂)的酸性肿瘤微环境中, Fe-CDs能催化羟基自由基(•OH)生成, 诱导脂质过氧化, 最终触发铁死亡. 体内外实验均表明, Fe-CDs对肿瘤生长具有显著的抑制作用. 此外, Fe-CDs表现出优异的生物相容性, 未见明显的全身毒性. 通过结合荧光成像与催化治疗, 本研究为肿瘤治疗和铁死亡研究提供了一个有前景的新策略.

Abstract

In this work, iron-doped carbon dots(Fe-CDs) with strong peroxidase-mimicking activity were synthesized for tumor-specific therapy. Their intrinsic red fluorescence enabled high-contrast cellular imaging, revealing preferential mitochondrial accumulation. In the acidic and hydrogen peroxide(H₂O₂)-rich tumor microenvironment, Fe-CDs catalyzed hydroxyl radical(•OH) generation, inducing oxidative stress and lipid peroxidation, ultimately triggering ferroptosis. In vitro and in vivo studies demonstrated potent tumor inhibition. Furthermore, Fe-CDs exhibited excellent biocompatibility with no significant systemic toxicity. By integrating fluorescence imaging and catalytic therapy, this study presents a promising nanoplatform for tumor treatment and ferroptosis research.

关键词

碳点 / 纳米酶 / 线粒体靶向 / 铁死亡 / 肿瘤治疗

Key words

Carbon dots / Nanozyme / Mitochondria-targeting / Ferroptosis / Tumor therapy

引用本文

导出引用
薛小矿 , 李建 , 梁焕仪 , . 红光发射线粒体靶向铁掺杂碳点通过类过氧化物酶活性诱导铁死亡进行肿瘤治疗. 高等学校化学学报. 2025, 46(6): 171-183 https://doi.org/10.7503/cjcu20250094
XUE Xiaokuang, LI Jian, LIANG Huanyi, et al. Red-emissive Mitochondria-targeting Iron-doped Carbon Dots for Tumor Therapy via Peroxidase-mimicking Activity-induced Ferroptosis[J]. Chemical Journal of Chinese Universities. 2025, 46(6): 171-183 https://doi.org/10.7503/cjcu20250094

参考文献

1
Gao L., Zhuang J., Nie L., Zhang J., Zhang Y., Gu N., Wang T., Feng J., Yang D., Perrett S., Yan X., Nature Nanotechnology20072(9), 577—583
2
Gao L., Wei H., Dong S., Yan X., Advanced Materials202436(10), 2305249
3
Gao S., Lin H., Zhang H., Yao H., Chen Y., Shi J., Advanced Science20196(3), 1801733
4
Yang B., Shi J., Journal of the American Chemical Society2020142(52), 21775—21785
5
Wang M., Huang G., You Z., Jia R., Zhong Y., Bai F., Chem. Res. Chinese Universities202339(4), 612—623
6
Wang W., Luo Q., Li J., Li L., Li Y., Huo X., Du X., Li Z., Wang N., Advanced Functional Materials202232(36), 2205461
7
Liu B., Liu J., Nano Research201710(4), 1125—1148
8
Huang L., Chen J., Gan L., Wang J., Dong S., Science Advances20195(5), eaav5490
9
Cao M., Xing X., Shen X., Ouyang J., Na N., Chem. Res. Chinese Universities202440(2), 202—212
10
Huo M., Wang L., Wang Y., Chen Y., Shi J., ACS Nano201913(2), 2643—2653
11
Fan K., Xi J., Fan L., Wang P., Zhu C., Tang Y., Xu X., Liang M., Jiang B., Yan X., Gao L., Nature Communications20189(1), 1440
12
Otasevic V., Vucetic M., Grigorov I., Martinovic V., Stancic A., Oxidative Medicine and Cellular Longevity20212021(1), 5537330
13
Xie Y., Hou W., Song X., Yu Y., Huang J., Sun X., Kang R., Tang D., Cell Death & Differentiation201623(3), 369—379
14
Dixon S. J., Lemberg K. M., Lamprecht M. R., Skouta R., Zaitsev E. M., Gleason C. E., Patel D. N., Bauer A. J., Cantley A. M., Yang W. S., Morrison B., Stockwell B. R., Cell2012149(5), 1060—1072
15
Wang H., Lin D., Yu Q., Li Z., Lenahan C., Dong Y., Wei Q., Shao A., Frontiers in Cell and Developmental Biology20219, 629150
16
Chen X., Comish P. B., Tang D., Kang R., Frontiers in Cell and Developmental Biology20219, 637162
17
Wu A., Han M., Ding H., Rao H., Lu Z., Sun M., Wang Y., Chen Y., Zhang Y., Wang X., Chen D., Chemical Engineering Journal2023474, 145920
18
Ragazzon G., Cadranel A., Ushakova E. V., Wang Y., Guldi D. M., Rogach A. L., Kotov N. A., Prato M., Chem20217(3), 606—628
19
Shi Y., Xu H., Yuan T., Meng T., Wu H., Chang J., Wang H., Song X., Li Y., Li X., Zhang Y., Xie W., Fan L., Aggregate20223(3), e108
20
Wang B., Lu S., Matter20225(1), 110—149
21
Hussain M. M., Khan W. U., Ahmed F., Wei Y., Xiong H., Chemical Engineering Journal2023465, 143010
22
Li J., Yang S., Deng Y., Chai P., Yang Y., He X., Xie X., Kang Z., Ding G., Zhou H., Fan X., Advanced Functional Materials201828(30), 1870206
23
Xia C., Zhu S., Feng T., Yang M., Yang B., Advanced Science20196(23), 1901316
24
Nan F., Xue X., Li J., Liang K., Wang J., Yu W. W., Ge J., Wang P., Science China Materials202467(11), 3742—3752
25
Wang X., Lu Y., Hua K., Yang D., Yang Y., Analytical and Bioanalytical Chemistry2021413(5), 1373—1382
26
Yang M., Li H., Liu X., Huang L., Zhang B., Liu K., Xie W., Cui J., Li D., Lu L., Sun H., Yang B., Journal of Nanobiotechnology202321(1), 431
27
Deng Z., Qian Y., Yu Y., Liu G., Hu J., Zhang G., Liu S., Journal of the American Chemical Society2016138(33), 10452—10466
28
Nan F., Jia Q., Xue X., Wang S., Liu W., Wang J., Ge J., Wang P., Biomaterials2022284, 121495
29
Lu S., Sui L., Liu J., Zhu S., Chen A., Jin M., Yang B., Advanced Materials201729(15), 1603443
30
Li J., Wang J., Liang K., Xue X., Chen T., Gao Z., Ren H., Gao L., Ge J., Chemical Engineering Journal2024500, 157033
31
Yang Y., Xu J., Zhou R., Qin Z., Liao C., Shi S., Chen Y., Guo Y., Zhang S., Carbon2024219, 118831
32
Xie M., Li F., Li Y., Qian K., Liang Y., Lei B., Liu Y., Cui J., Xiao Y., Chemical Engineering Journal2025506, 159956
33
Jiang B., Duan D., Gao L., Zhou M., Fan K., Tang Y., Xi J., Bi Y., Tong Z., Gao G. F., Xie N., Tang A., Nie G., Liang M., Yan X., Nature Protocols201813(7), 1506—1520
34
Huo M., Wang L., Chen Y., Shi J., Nature Communications20178(1), 357

评论

PDF(3003 KB)

Accesses

Citation

Detail

段落导航
相关文章

/