绿色荧光碳点的合成、 荧光机制和图案化

杨春圆, 陈昊, 张攀, 李府赪, 袁伟雄, 郭佳壮, 王彩凤, 陈苏

PDF(2018 KB)
PDF(2018 KB)
高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (6) : 130-138. DOI: 10.7503/cjcu20250093
研究论文

绿色荧光碳点的合成、 荧光机制和图案化

作者信息 +

Synthesis, Fluorescence Mechanism and Patterning of Green-emissive Carbon Dots

Author information +
History +

摘要

以水杨酸和乙二胺为前驱体, 经过水热法处理并利用透析与柱色谱纯化, 制备了具有绿色荧光的碳点(G-CDs1). G-CDs1的发射波长为518 nm, 荧光量子产率为22.3%. 结构表征结果表明, G-CDs1具有石墨化碳核和丰富的表面官能团(—OH, —COOH和—NH2等). 进行了对比实验, 即通过水热处理水杨酸, 得到了具有蓝色荧光的碳核, 再与乙二胺反应, 也得到了绿色荧光碳点(G-CDs2). 通过对比发现, G-CDs2与G-CDs1具有一致的荧光特性和结构特征, 从而揭示了“碳核-荧光团”协同发光机制: 乙二胺通过缺陷钝化或表面反应生成绿色荧光团, 与碳核共同贡献荧光. 基于此, 进一步开发了G-CDs1/聚乙烯吡咯烷酮(G-CDs1/PVP)荧光油墨复合材料, 并实现了图案化打印, 所打印的图案具有明亮的绿色荧光. 该研究为碳点的可控合成、 荧光机理和功能化应用研究提供了更多的理论基础.

Abstract

In this study, green-emissive carbon dots(G-CDs1) were prepared using salicylic acid and ethylenediamine as precursors through a hydrothermal method, followed by purification via dialysis and column chromatography. G-CDs1 exhibited an emission wavelength of 518 nm and a photoluminescence quantum yield(PLQY) of 22.3%. Structural characterization revealed that G-CDs1 possess a graphitic carbon core and abundant surface functional groups(—OH, —COOH, —NH2). Comparative experiments were designed: first, blue-emissive carbon cores were obtained by hydrothermally treating salicylic acid alone; then, these cores were reacted with ethylenediamine to produce green-emissive carbon dots(G-CDs2). Comparative analysis showed that G-CDs2 and G-CDs1 shared identical fluorescence properties and structural features, revealing a “carbon core-fluorophore” synergistic emission mechanism, where green-emissive fluorophores were generated through defect passivation or surface reaction with ethylenediamine, jointly contributing to the fluorescence emission together with the carbon core. Consequently, a G-CDs1/polyvinylpyrrolidone(PVP) fluorescent ink composite was developed, enabling printed patterns with bright green fluorescence. This research contributes to the development of controllable synthesis, fluorescence mechanism, and applications of carbon dots.

关键词

碳点 / 绿色荧光 / 水杨酸 / 荧光机制 / 图案化打印

Key words

Carbon dots / Green fluorescence / Salicylic acid / Fluorescence mechanism / Patterned printing

中图分类号

O657.3 / TB383 / O631

引用本文

导出引用
杨春圆 , 陈昊 , 张攀 , . 绿色荧光碳点的合成、 荧光机制和图案化. 高等学校化学学报. 2025, 46(6): 130-138 https://doi.org/10.7503/cjcu20250093
YANG Chunyuan, CHEN Hao, ZHANG Pan, et al. Synthesis, Fluorescence Mechanism and Patterning of Green-emissive Carbon Dots[J]. Chemical Journal of Chinese Universities. 2025, 46(6): 130-138 https://doi.org/10.7503/cjcu20250093

参考文献

1
Yu Y., Zeng Q. S., Tao S. Y., Xia C. L., Liu C. M., Liu P. Y., Yang B., Adv. Sci., 202310(12), 2207621
2
Guo J. Z., Lu Y. S., Xie A. Q., Li G., Liang Z. B., Wang C. F., Yang X. N., Chen S., Adv. Funct. Mater., 202232(20), 2110393
3
Shi M. C., Gao Q., Rao J., Lv Z. W., Chen M. X., Chen G. G., Bian J., Ren J. L., Lu B. Z., Peng F., J. Am. Chem. Soc., 2023146(2), 1294—1304
4
Shen J. L., Gu H. B., He Z., Lin W., Ind. Eng. Chem. Res., 202362(8), 3622—3634
5
Wu Y. F. S., Chen X., Wu W., Small20239(10), 2206709
6
Zhang Q., Wang R. Y., Feng B.W., Zhong X. X., Ostrikov K. K., Nat. Commun., 202112(1), 6856
7
Zhao B., Ma H., Jia H. Y., Zheng M. Y., Xu K. X., Yu R. N., Qu S. N., Tan Z. A., Angew. Chem., Int. Ed.202362(22), e202301651
8
Liu J., Liu Y., Liu N. Y., Han Y. Z., Zhang X., Huang H., Lifshitz Y., Lee S. T., Zhong J., Kang Z. H., Science2015347(6225), 970—974
9
Xu X. H., Wang L., Ling P. C., Ma T. F., Shi L., Wang H., Lu Y. C., Chem. J. Chinese Universities202445(09)136—145
徐小花, 王莉, 林鹏程, 马天锋, 石琳, 王欢, 芦永昌. 高等学校化学学报, 202445(09) 136—145
10
Zhu S. J., Meng Q. N., Wang L., Zhang J. H., Song Y. B., Jin H., Zhang K., Sun H. C., Wang H. Y., Yang B., Angew. Chem., Int. Ed.201352(14), 3953—3957
11
Yang S. W., Sun J., Li X. B., Zhou W., Wang Z. Y., He P., Ding G. Q., Xie X. M., Kang Z. H., Jiang M. H., J. Mater. Chem. A20142(23), 8660—8667
12
Guo J. Z., Li H., Ling L. T., Li G., Cheng R., Lu X., Xie A. Q., Li Q., Wang C. F., Chen S., ACS Sustainable Chem. Eng., 20208(3), 1566—1572.
13
Martindale B. C. M., Hutton G. A. M., Caputo C. A., Reisner E., J. Am. Chem. Soc., 2015137(18), 6018—6025
14
Vallan L., Urriolabeitia E. P., Ruiperez F., Matxain J. M., Canton⁃Vitoria R., Tagmatarchis N., Benito A. M., Maser W. K., J. Am. Chem. Soc., 2018140(40), 12862—12869
15
Sun Y. P., Zhou B., Lin Y., Wang W., Fernando K. A. S., Pathak P., Meziani M. J., Harruff B. A., Wang X., Wang H. F., Luo P. G., Yang H., Kose M. E., Chen B. L., Veca L. M., Xie S. Y., J. Am. Chem. Soc., 2006128(24), 7756—7757
16
Annamalai K., Annamalai A., Ravichandran R., Jeevarathinam A., Annamalai P., Valdes H., Elumalai S., New J. Chem., 202348(1), 216—227
17
Li X. J., Zheng M. D., Wang H. J., Meng Y., Wang D., Liu L. L., Zeng Q. H., Xu X. W., Zhou D., Sun H. C., J. Colloid Interface Sci., 2022609, 54—64
18
Paterson J. R., Lawrence J. R., An International Journal of Medicine200194(8), 445—448
19
Zheng L. Y., Chi Y. W., Dong Y. Q., Lin J. P., Wang B. B., J. Am. Chem. Soc., 2009131(13), 4564—4565
20
Shi Y. X., Zhang Y., Wang Z. B., Yuan T., Meng T., Li Y. C., Li X. H., Yuan F. L., Tan Z. A., Fan L. Z., Nat. Commun., 202415(1), 3043
21
Mueller M. L., Yan X., McGuire J. A., Li L. S., Nano Lett., 201010(7), 2679—2682
22
Zhu Z. J., Cheng R., Ling L.T., Li Q., Chen S., Angew. Chem., Int. Ed. 202059(8), 3099—3105
23
Guo J. Z., Zhang P., Zhu L. L., Chen H., Shen H. X., Wang C. F., Chen S., Ind. Eng. Chem. Res., 202463(20), 9050—9057
24
Han X., Xia C. L., Wu H., Xie Y. D., Li R., Sui B. W., Yu Y., Wang B., Yang B., Angew. Chem., Int. Ed.202564, e202422822
25
Yuan T., Yuan F. L., Sui L. Z., Zhang Y., Li Y. C., Li X. H., Tan Z. A., Fan L. Z., Angew. Chem., Int. Ed.202362(20), e202218568
26
Zhang B. H., Wang B. Z., Ushakova E. V., He B. C., Xing G. C., Tang Z. K., Rogach A. L., Qu S. N., Small202219(31), 2204158
27
Xiao L., Wang Y., Huang Y., Wong T., Sun H. D., Nanoscale20179(34), 12637—12646
28
Li P. F., Xue S. S., Sun L., Zong X. P., An L., Qu D., Wang X. Y., Sun Z. C., Light: Sci. Appl., 202211(1), 298
29
Wang B. Y., Lu S. Y., Mater., 20225(1), 110—149
30
Song Y. B., Zhu S. J., Zhang S. T., Fu Y., Wang L., Zhao X. H., Yang B., J. Mater. Chem. C20153(23), 5976—5984
31
Kasprzyk W., Swiergosz T., Bednarz S., Walas K., Bashmakova N. V., Bogdal D., Nanoscale201810(29), 13889—13894
32
Essner J. B., Kist J. A., Polo⁃Parada L., Baker G. A., Chem. Mater., 201830(6), 1878—1887
33
Arul V., Edison T. N., Lee Y. R., Sethuraman M. G., J. Photochem. Photobiol., B2017168, 142—148
34
Yuan F. L., Yuan T., Sui L. Z., Wang Z. B., Xi Z. F., Li Y. C., Li X. H., Fan L. Z., Tan Z. A., Chen A. M., Jin M. X., Yang S. H., Nat. Commun., 20189(1), 2249
35
Miao X., Qu D., Yang D. X., Nie B., Zhao Y. K., Fan H. Y., Sun Z. C., Adv Mater., 201830(1), 1704740
36
Ding H., Wei J. S., Zhang P., Zhou Z. Y., Gao Q. Y., Xiong H. M., Small201814(22), 1800612
37
Wang B. Y., Yu J. K., Sui L. Z., Zhu S. J., Tang Z. Y., Yang B., Lu S. Y., Adv. Sci., 20208(1), 2001453
38
Baker S. N., Baker G. A., Angew. Chem., Int. Ed.201049(38), 6726—6744
39
Sun H. Z., Yang G. D., Yang B., Chem. J. Chinese Universities202142(02)349—365
孙海珠, 杨国夺, 杨柏. 高等学校化学学报, 202142(02) 349—365
40
Chen B. B., Liu M. L., Li C. M., Huang C. Z., Adv. Colloid Interface Sci., 2019270: 165—190
41
Dong T., Zhao J., Li G., Li F. C., Li Q., Chen S., ACS Appl. Mater. Interfaces202113(33), 39748—39754

评论

PDF(2018 KB)

Accesses

Citation

Detail

段落导航
相关文章

/