
绿色荧光碳点的合成、 荧光机制和图案化
杨春圆, 陈昊, 张攀, 李府赪, 袁伟雄, 郭佳壮, 王彩凤, 陈苏
绿色荧光碳点的合成、 荧光机制和图案化
Synthesis, Fluorescence Mechanism and Patterning of Green-emissive Carbon Dots
以水杨酸和乙二胺为前驱体, 经过水热法处理并利用透析与柱色谱纯化, 制备了具有绿色荧光的碳点(G-CDs1). G-CDs1的发射波长为518 nm, 荧光量子产率为22.3%. 结构表征结果表明, G-CDs1具有石墨化碳核和丰富的表面官能团(—OH, —COOH和—NH2等). 进行了对比实验, 即通过水热处理水杨酸, 得到了具有蓝色荧光的碳核, 再与乙二胺反应, 也得到了绿色荧光碳点(G-CDs2). 通过对比发现, G-CDs2与G-CDs1具有一致的荧光特性和结构特征, 从而揭示了“碳核-荧光团”协同发光机制: 乙二胺通过缺陷钝化或表面反应生成绿色荧光团, 与碳核共同贡献荧光. 基于此, 进一步开发了G-CDs1/聚乙烯吡咯烷酮(G-CDs1/PVP)荧光油墨复合材料, 并实现了图案化打印, 所打印的图案具有明亮的绿色荧光. 该研究为碳点的可控合成、 荧光机理和功能化应用研究提供了更多的理论基础.
In this study, green-emissive carbon dots(G-CDs1) were prepared using salicylic acid and ethylenediamine as precursors through a hydrothermal method, followed by purification via dialysis and column chromatography. G-CDs1 exhibited an emission wavelength of 518 nm and a photoluminescence quantum yield(PLQY) of 22.3%. Structural characterization revealed that G-CDs1 possess a graphitic carbon core and abundant surface functional groups(—OH, —COOH, —NH2). Comparative experiments were designed: first, blue-emissive carbon cores were obtained by hydrothermally treating salicylic acid alone; then, these cores were reacted with ethylenediamine to produce green-emissive carbon dots(G-CDs2). Comparative analysis showed that G-CDs2 and G-CDs1 shared identical fluorescence properties and structural features, revealing a “carbon core-fluorophore” synergistic emission mechanism, where green-emissive fluorophores were generated through defect passivation or surface reaction with ethylenediamine, jointly contributing to the fluorescence emission together with the carbon core. Consequently, a G-CDs1/polyvinylpyrrolidone(PVP) fluorescent ink composite was developed, enabling printed patterns with bright green fluorescence. This research contributes to the development of controllable synthesis, fluorescence mechanism, and applications of carbon dots.
碳点 / 绿色荧光 / 水杨酸 / 荧光机制 / 图案化打印
Carbon dots / Green fluorescence / Salicylic acid / Fluorescence mechanism / Patterned printing
O657.3 / TB383 / O631
1 |
Yu Y., Zeng Q. S., Tao S. Y., Xia C. L., Liu C. M., Liu P. Y., Yang B., Adv. Sci., 2023, 10(12), 2207621
|
2 |
Guo J. Z., Lu Y. S., Xie A. Q., Li G., Liang Z. B., Wang C. F., Yang X. N., Chen S., Adv. Funct. Mater., 2022, 32(20), 2110393
|
3 |
Shi M. C., Gao Q., Rao J., Lv Z. W., Chen M. X., Chen G. G., Bian J., Ren J. L., Lu B. Z., Peng F., J. Am. Chem. Soc., 2023, 146(2), 1294—1304
|
4 |
Shen J. L., Gu H. B., He Z., Lin W., Ind. Eng. Chem. Res., 2023, 62(8), 3622—3634
|
5 |
Wu Y. F. S., Chen X., Wu W., Small, 2023, 9(10), 2206709
|
6 |
Zhang Q., Wang R. Y., Feng B.W., Zhong X. X., Ostrikov K. K., Nat. Commun., 2021, 12(1), 6856
|
7 |
Zhao B., Ma H., Jia H. Y., Zheng M. Y., Xu K. X., Yu R. N., Qu S. N., Tan Z. A., Angew. Chem., Int. Ed., 2023, 62(22), e202301651
|
8 |
Liu J., Liu Y., Liu N. Y., Han Y. Z., Zhang X., Huang H., Lifshitz Y., Lee S. T., Zhong J., Kang Z. H., Science, 2015, 347(6225), 970—974
|
9 |
Xu X. H., Wang L., Ling P. C., Ma T. F., Shi L., Wang H., Lu Y. C., Chem. J. Chinese Universities, 2024, 45(09)136—145
徐小花, 王莉, 林鹏程, 马天锋, 石琳, 王欢, 芦永昌. 高等学校化学学报, 2024, 45(09) 136—145
|
10 |
Zhu S. J., Meng Q. N., Wang L., Zhang J. H., Song Y. B., Jin H., Zhang K., Sun H. C., Wang H. Y., Yang B., Angew. Chem., Int. Ed., 2013, 52(14), 3953—3957
|
11 |
Yang S. W., Sun J., Li X. B., Zhou W., Wang Z. Y., He P., Ding G. Q., Xie X. M., Kang Z. H., Jiang M. H., J. Mater. Chem. A, 2014, 2(23), 8660—8667
|
12 |
Guo J. Z., Li H., Ling L. T., Li G., Cheng R., Lu X., Xie A. Q., Li Q., Wang C. F., Chen S., ACS Sustainable Chem. Eng., 2020, 8(3), 1566—1572.
|
13 |
Martindale B. C. M., Hutton G. A. M., Caputo C. A., Reisner E., J. Am. Chem. Soc., 2015, 137(18), 6018—6025
|
14 |
Vallan L., Urriolabeitia E. P., Ruiperez F., Matxain J. M., Canton⁃Vitoria R., Tagmatarchis N., Benito A. M., Maser W. K., J. Am. Chem. Soc., 2018, 140(40), 12862—12869
|
15 |
Sun Y. P., Zhou B., Lin Y., Wang W., Fernando K. A. S., Pathak P., Meziani M. J., Harruff B. A., Wang X., Wang H. F., Luo P. G., Yang H., Kose M. E., Chen B. L., Veca L. M., Xie S. Y., J. Am. Chem. Soc., 2006, 128(24), 7756—7757
|
16 |
Annamalai K., Annamalai A., Ravichandran R., Jeevarathinam A., Annamalai P., Valdes H., Elumalai S., New J. Chem., 2023, 48(1), 216—227
|
17 |
Li X. J., Zheng M. D., Wang H. J., Meng Y., Wang D., Liu L. L., Zeng Q. H., Xu X. W., Zhou D., Sun H. C., J. Colloid Interface Sci., 2022, 609, 54—64
|
18 |
Paterson J. R., Lawrence J. R., An International Journal of Medicine, 2001, 94(8), 445—448
|
19 |
Zheng L. Y., Chi Y. W., Dong Y. Q., Lin J. P., Wang B. B., J. Am. Chem. Soc., 2009, 131(13), 4564—4565
|
20 |
Shi Y. X., Zhang Y., Wang Z. B., Yuan T., Meng T., Li Y. C., Li X. H., Yuan F. L., Tan Z. A., Fan L. Z., Nat. Commun., 2024, 15(1), 3043
|
21 |
Mueller M. L., Yan X., McGuire J. A., Li L. S., Nano Lett., 2010, 10(7), 2679—2682
|
22 |
Zhu Z. J., Cheng R., Ling L.T., Li Q., Chen S., Angew. Chem., Int. Ed. 2020, 59(8), 3099—3105
|
23 |
Guo J. Z., Zhang P., Zhu L. L., Chen H., Shen H. X., Wang C. F., Chen S., Ind. Eng. Chem. Res., 2024, 63(20), 9050—9057
|
24 |
Han X., Xia C. L., Wu H., Xie Y. D., Li R., Sui B. W., Yu Y., Wang B., Yang B., Angew. Chem., Int. Ed., 2025, 64, e202422822
|
25 |
Yuan T., Yuan F. L., Sui L. Z., Zhang Y., Li Y. C., Li X. H., Tan Z. A., Fan L. Z., Angew. Chem., Int. Ed., 2023, 62(20), e202218568
|
26 |
Zhang B. H., Wang B. Z., Ushakova E. V., He B. C., Xing G. C., Tang Z. K., Rogach A. L., Qu S. N., Small, 2022, 19(31), 2204158
|
27 |
Xiao L., Wang Y., Huang Y., Wong T., Sun H. D., Nanoscale, 2017, 9(34), 12637—12646
|
28 |
Li P. F., Xue S. S., Sun L., Zong X. P., An L., Qu D., Wang X. Y., Sun Z. C., Light: Sci. Appl., 2022, 11(1), 298
|
29 |
Wang B. Y., Lu S. Y., Mater., 2022, 5(1), 110—149
|
30 |
Song Y. B., Zhu S. J., Zhang S. T., Fu Y., Wang L., Zhao X. H., Yang B., J. Mater. Chem. C, 2015, 3(23), 5976—5984
|
31 |
Kasprzyk W., Swiergosz T., Bednarz S., Walas K., Bashmakova N. V., Bogdal D., Nanoscale, 2018, 10(29), 13889—13894
|
32 |
Essner J. B., Kist J. A., Polo⁃Parada L., Baker G. A., Chem. Mater., 2018, 30(6), 1878—1887
|
33 |
Arul V., Edison T. N., Lee Y. R., Sethuraman M. G., J. Photochem. Photobiol., B, 2017, 168, 142—148
|
34 |
Yuan F. L., Yuan T., Sui L. Z., Wang Z. B., Xi Z. F., Li Y. C., Li X. H., Fan L. Z., Tan Z. A., Chen A. M., Jin M. X., Yang S. H., Nat. Commun., 2018, 9(1), 2249
|
35 |
Miao X., Qu D., Yang D. X., Nie B., Zhao Y. K., Fan H. Y., Sun Z. C., Adv Mater., 2018, 30(1), 1704740
|
36 |
Ding H., Wei J. S., Zhang P., Zhou Z. Y., Gao Q. Y., Xiong H. M., Small, 2018, 14(22), 1800612
|
37 |
Wang B. Y., Yu J. K., Sui L. Z., Zhu S. J., Tang Z. Y., Yang B., Lu S. Y., Adv. Sci., 2020, 8(1), 2001453
|
38 |
Baker S. N., Baker G. A., Angew. Chem., Int. Ed., 2010, 49(38), 6726—6744
|
39 |
Sun H. Z., Yang G. D., Yang B., Chem. J. Chinese Universities, 2021, 42(02)349—365
孙海珠, 杨国夺, 杨柏. 高等学校化学学报, 2021, 42(02) 349—365
|
40 |
Chen B. B., Liu M. L., Li C. M., Huang C. Z., Adv. Colloid Interface Sci., 2019, 270: 165—190
|
41 |
Dong T., Zhao J., Li G., Li F. C., Li Q., Chen S., ACS Appl. Mater. Interfaces, 2021, 13(33), 39748—39754
|
/
〈 |
|
〉 |