高荧光量子产率的CO2衍生红光碳点的制备及应用

郭丹, 黄耿鸿, 白惠洁, 王亚玲, 曹广群, 刘斌, 胡胜亮

PDF(1499 KB)
PDF(1499 KB)
高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (6) : 115-121. DOI: 10.7503/cjcu20250091
研究论文

高荧光量子产率的CO2衍生红光碳点的制备及应用

作者信息 +

Preparation and Applications of CO2-Derived Red-emissive Carbon Dots with a High Quantum Yield

Author information +
History +

摘要

以CO2和三羟甲基丙烷三缩水甘油醚为起始原料, 通过环加成反应制备了具有五元环状碳酸酯结构的三羟甲基丙烷基五元环碳酸酯(TPTE). 在此基础上, 以TPTE和邻苯二胺为前驱体, 乙醇为溶剂, 采用溶剂热法合成了量子产率达38%的红色荧光碳点(R-CDs). 结构表征结果表明, 所得R-CDs的平均粒径为9.41 nm, 其碳核呈现高度石墨化特征, 表面富含羟基和氨基等活性官能团. 光学性能测试结果显示, 在乙醇溶液中R-CDs展现出明显的激发独立特性, 其荧光峰呈现三重峰, 峰位分别为599, 648和702 nm, 其最佳激发波长位于 535 nm, 对应荧光寿命为6.46 ns. 通过理论计算与光谱分析证实, 该发光特性源于碳核内扩展的π共轭体系诱导的ππ * 电子跃迁. 值得注意的是, 当与聚乙烯吡咯烷酮(PVP)复合时, R-CDs的紫外吸收和荧光发射特性未发生显著变化, 表明PVP基体与R-CDs间未产生明显的电子相互作用. 基于其优异的光学性能, 将R-CDs/PVP复合物作为荧光粉, 与360 nm紫外LED芯片集成构建了红光发光器件. 所制备LED器件的CIE色坐标(0.42, 0.21)精确落入红光区域, 展现出良好的单色性. 本研究通过将CO2有效转化为功能化环碳酸酯前驱体, 实现了CO2向高附加值碳材料的高效间接固定, 为温室气体资源化利用提供了创新思路. 这种集高量子产率荧光材料开发与碳减排技术于一体的研究策略, 在光电器件和绿色化学领域均具有重要应用价值.

Abstract

A five-membered cyclic carbonate compound, tris(hydroxymethyl)propyl pentacyclic carbonate(TPTE), was synthesized using CO2 and trihydroxymethylpropane triglycidyl ether as starting materials via cycloaddition reaction. Subsequently, red-emissive carbon dots(R-CDs) with a quantum yield of 38% were prepared through a solvothermal method using TPTE and o-phenylenediamine as precursors and ethanol as the solvent. Structural characterization revealed that the obtained R-CDs exhibited an average particle size of 9.41 nm, with a highly graphitized carbon core and surface-rich hydroxyl and amino functional groups. Optical performance testing demonstrated that the R-CDs in ethanol solution displayed distinct excitation-independent characteristics, showing three-fingered emission peaks at 599, 648 and 702 nm under excitation at 535 nm, accompanied by a fluorescence lifetime of 6.46 ns. Theoretical calculations and spectroscopic analyses confirmed that these luminescent properties originated from extended π-conjugated systems within the carbon core inducing(ππ *) transitions. Notably, when combined with polyvinylpyrrolidone(PVP), the ultraviolet-visible absorption and fluorescence emission characteristics of R-CDs remained essentially unchanged, indicating negligible electronic interactions between PVP matrices and R-CDs. Leveraging their excellent optical properties, R-CDs/PVP composites were employed as phosphors integrated with a 360 nm ultraviolet LED chip to fabricate red-emitting devices. The prepared LED exhibited CIE chromaticity coordinates of (0.42, 0.21), precisely falling within the red light region with high monochromaticity. Significantly, this research achieved efficient indirect fixation of CO2 by converting it into functionalized cyclic carbonate precursors, providing an innovative approach for greenhouse gas valorization. This integrated strategy combining high-quantum-yield fluorescent material development with carbon reduction technology holds substantial application potential in optoelectronic devices and green chemistry.

关键词

碳点 / 二氧化碳 / 红光 / 发光二极管

Key words

Carbon dots / Carbon dioxide / Red-emissive / Light-emitting diodes

中图分类号

O613

引用本文

导出引用
郭丹 , 黄耿鸿 , 白惠洁 , . 高荧光量子产率的CO2衍生红光碳点的制备及应用. 高等学校化学学报. 2025, 46(6): 115-121 https://doi.org/10.7503/cjcu20250091
GUO Dan, HUANG Genghong, BAI Huijie, et al. Preparation and Applications of CO2-Derived Red-emissive Carbon Dots with a High Quantum Yield[J]. Chemical Journal of Chinese Universities. 2025, 46(6): 115-121 https://doi.org/10.7503/cjcu20250091

参考文献

1
Xu X. Y., Ray R., Gu Y. L., Ploehn H. J., Gearheart L., Raker K., Scrivens W. A., J. Am. Chem. Soc.2004126(40), 12736—12737
2
Yang X., Li X., Wang B. Y., Ai L., Li G. P., Yang B., Lu S. Y., Chin. Chem. Lett. 202233(2), 613—625
3
Zhang L. Y., Wang W., Jin P., Sun Z. G., Zhan Y., Jiang B. B., Compos. Commun.202553, 102172
4
Liu Y., Wang B. Y., Li Y. X., Li W. D., Lu S. Y., Chin. Chem. Lett.202536(2), 110426
5
Wang B. Y., Waterhouse G. I. N. , Yang B., Lu S. Y., Acc. Chem. Res.202457(19), 2928—2939
6
Zhang Y. Q., Lu S. Y., Chem202410(1), 134—171
7
Zhou Z. J., Song J. B., Nie L. M., Chen X. Y., Chem. Soc. Rev. 201645(23), 6597—6626
8
Wang Y. F., Wang K., Han Z. X., Yin Z. M., Zhou C. J., Du F. L., Zhou S. Y., Chen P., Xie Z., J. Mater. Chem. C20175(37), 9629—9637
9
Wang F. H., Wang K. X., Guan R. F., Zhang H., J. Colloid Interface Sci.2025691, 137416
10
Han Y., Liccardo L., Moretti E., Zhao H. G., Vomiero A., J. Mater. Chem. C202210(33), 11827—11847
11
Ding H., Ji Y., Wei J. S., Gao Q. Y., Zhou Z. Y., Xiong H. M., J. Mater. Chem. B20175(26), 5272—5277
12
Cao J. B., Chen R., Wang L. F., Xing H. M., Hu H. W., Yang X. D., Gu C. J., Tang S. Y., Chen D., Chem. Eng. J.2024491, 152121
13
Lukprang T., Preechaburana P., Amloy S., Radiat. Phys. Chem.2024223, 111941
14
Yong Z. H., Sun W. J., Kang S. W., Zhu X. Y., Wang M., Kang C. R., Ding M., Acta Photonica Sin.202453(7), 0753312⁃10
雍哲浩, 孙文洁, 康守旺, 朱欣悦, 王敏, 康聪瑞, 丁镠. 光子学报, 202453(7), 127—136
15
Wang F. H., Dong X. Z., Zuo Y. J., Xie Z., Guan R. F., Mater. Today Phys.202441, 101332
16
Lu H. Z., Xu S. F., Liu J. Q., ACS Sens.20194(7), 1917—1924
17
Wang Y. H., Xie Z. M., Wang X. H., Peng X., Zheng J. P., J. Nanobiotechnol., 202119(1), 260
18
Zhang X. H., Wei R. J., Zhang Y. Y., Du B. Y., Fan Z. Q., Macromolecules201548(3), 536—544
19
Liu B., Chu B., Wang Y. L., Hu L. F., Hu S. L., Zhang X. H., Green Chem., 202123(1), 422—429
20
Nakamuta Y., Toh S., Am. Mineral.201398(4), 574—581
21
Erdal N. B., Adolfsson K. H., Pettersson T., Hakkarainen M., ACS Sustain. Chem. Eng. 20186(1), 1246—1255
22
Lee T., Min S. H., Gu M., Jung Y. K., Lee W., Lee J. U., Seong D. G., Kim B. S., Chem. Mater.201527(11), 3785—3796
23
Branca C., D’Angelo G., Crupi C., Khouzami K., Rifici S., Ruello G., Wanderlingh U., Polymer201699, 614—622
24
Nandiyanto A. B. D., Oktiani R., Ragadhita R., Indones. J. Sci. Technol.20194(1), 97—118
25
Annamalai K., Annamalai A., Ravichandran R., Jeevarathinam A., Annamalai P., Valdes H., Elumalai S., New J. Chem.202348(1), 216—227
26
Feng M. N., Zhou M. J., Zhang W. J., Shi G., He Y. J., Qiao X. G., Pang X. C., Polym. Chem.202415(38), 3916—3924
27
Yu Y. Z., Li W., Huang Y. X., Yang H. X., Lv C. Y., Yan H. X., Lin D., Jiao S. C., Hou L. L., Wu Z. L., Small202420(29), 2309577
28
Li Y. Q., Wan S. J., Liang W. C., Cheng B., Wang W., Xiang Y., Yu J. G., Cao S. W., Small202420(31), 2312104
29
Yang G. C., Wu C. L., Luo X. J., Liu X. Y., Gao Y., Wu P., Cao C. X., Saavedra S. S., J. Phys. Chem. C2018122(11), 6483—6492
30
Yang X., Sui L. Z., Wang B. Y., Zhang Y. Q., Tang Z. Y., Yang B., Lu S. Y., Sci. China Chem., 202164(9), 1547—1553
31
Cheng Z. Y., Wu S. G., Adv. Sustain. Syst.20259(2), 2400663
32
Vadia F. Y., Jha S., Mehta V. N., Park T. J., Malek N. I., Kailasa S. K., J. Photoch. Photobio. A2025458, 115948
33
Nelson D. J., Vasimalai N., John S. A., Sethuraman M. G., J. Fluoresc.202435(2), 1139—1150
34
Cai W., Zhang T., Xu M., Zhang M. R., Guo Y. J., Zhang L. P., Street J., Ong W. J., Xu Q., J. Mater. Chem. C20197(8), 2212—2218

评论

PDF(1499 KB)

Accesses

Citation

Detail

段落导航
相关文章

/