
菠菜基水溶红色荧光碳点的微波合成及Pb2+荧光检测性能
江霆杰, 曹珏然, 姚胜峰, 宋健, 李娜, 陈永颖, 李唯, 张浩然, 雷炳富
菠菜基水溶红色荧光碳点的微波合成及Pb2+荧光检测性能
Microwave-assisted Synthesis of Water-soluble Red-emitting Carbon Dots Derived from Spinach Powder and Its Pb²⁺ Fluorescence Detection Application
以菠菜粉为碳源, 通过微波法一步制备了水溶性红光碳点(R-CDs), 并研究了其光学性能、 结构特征及荧光调控机理. 结果表明, R-CDs具有均匀的粒径分布(3.62 nm)、 长波长红光发射(648 nm)及窄半峰宽(30 nm), 其荧光红移源于羟基与石墨氮的协同作用. 基于R-CDs构建的荧光探针可实现Pb²⁺的高选择性检测, 线性范围为0~40 nmol/L, 检测限为4.2 nmol/L(R²=0.990). 研究表明, Pb²⁺与R-CDs之间的相互作用主要由动态猝灭机制主导. 本研究为绿色合成红光碳点及其在重金属检测中的应用提供了新策略.
In this study, water-soluble red carbon dots(R-CDs) were successfully synthesized via a microwave- assisted method using spinach powder as the carbon precursor. The optical properties, structural characteristics, and fluorescence regulation mechanisms of R-CDs were investigated. The results demonstrated that R-CDs exhibit uniform particle size distribution(3.62 nm), long-wavelength red light emission(648 nm), and a narrow full width at half maxima(FWHM)(30 nm). The observed fluorescence redshift is attributed to the synergistic interaction between hydroxyl groups and graphitic-nitrogen. A fluorescent probe based on R-CDs was developed for highly selective detection of Pb²⁺ ions, with a linear response range of 0—40 nmol/L and a detection limit of 4.2 nmol/L (R²=0.990). Further studies revealed that the interaction between Pb²⁺ and R-CDs is primarily governed by a dynamic quenching mechanism. This work provides a novel and environmentally friendly approach for the synthesis of red carbon dots and their application in heavy metal ion sensing.
Carbon dot / Red fluorescence / Lead ion / Fluorescent probe
O657.3
1 |
Mostafa M. S., Bakr A. S. A., El Naggar A. M. A., Sultan E. S. A., J. Colloid Interface Sci., 2016, 461, 261—272
|
2 |
Huang L. S., Lin K. C., Spectrochimica. Acta B, 2001, 56(1), 123—128
|
3 |
Ebrahimi⁃Najafabadi H., Pasdaran A., Rezaei Bezenjani R., Bozorgzadeh E., Food Chem., 2019, 289, 26—32
|
4 |
Chen J. Y., Liu W. R., Li Y. J., Zou X. K., Li W., Liang J. R., Zhang H. R., Liu Y. L., Zhang X. J., Hu C. F., Lei B. F., Chem. Eng. J., 2022, 428, 131168
|
5 |
Li W., Wu S. S., Zhang H. R., Zhang X. J., Zhuang J. L., Hu C. F., Liu Y. L., Lei B. F., Ma L., Wang X. J., Adv. Funct. Mater., 2018, 28(44), 1804004
|
6 |
Li Z. X., Li H. X., Shi C. X., Yu M. M., Wei L. H., Ni Z. H., Spectrochimica. Acta A, 2016, 159, 249—253
|
7 |
Nißler R., Müller A. T., Dohrman F., Kurth L., Li H., Cosio E. G., Flavel B. S., Giraldo J. P., Mithöfer A., Kruss S., Angew. Chem. Int. Ed., 2022, 61(2), e202108373
|
8 |
Chen W. B., Li W., Zhang X. J., Ma C. G., Xia Z. G., Lei B. F., Sci. China Mater., 2022, 65(10), 2802—2808
|
9 |
Zhao Y. L., Jiang X., Huang K., Xiong X. L., Yang Q., Food Chem., 2025, 463, 141280
|
10 |
Li Y. D., Xu X. K., Li W., Hu C. F., Zhuang J. L., Zhang X. J., Lei B. F., Liu Y. L., Chin. J. Lumin., 2021, 42(8), 1172—1181
李亚东, 许晓凯, 李唯, 胡超凡, 庄健乐, 张学杰, 雷炳富, 刘应亮. 发光学报, 2021, 42(8), 1172—1181
|
11 |
Joseph J., Anappara A. A., ChemPhysChem, 2017, 18(3), 292—298
|
12 |
Xu H. H., Yan L. H., Nguyen V., Yu Y., Xu Y. M., Appl. Surf. Sci., 2017, 414, 238—243
|
13 |
Xu H., An Z. H., Zhang H. R., Li W., Yang X., Kang Y. Y., Su W., Zheng M. T., Lei B. F., Mater. Res. Bull., 2024, 170, 112590
|
14 |
Xu X. H., Wang L., Lin P. C., Ma T. F., Shi L., Wang H., Lu Y. C., Chem. J. Chinese Universities, 2024, 45(9), 20240251
徐小花, 王莉, 林鹏程, 马天锋, 石琳, 王欢, 芦永昌. 高等学校化学学报, 2024, 45(9), 20240251
|
15 |
Li L. L., Ji J., Fei R., Wang C. Z., Lu Q., Zhang J. R., Jiang L. P., Zhu J. J., Adv. Funct. Mater., 2012, 22(14), 2971—2979
|
16 |
Liu H. X., Zhong X., Pan Q., Zhang Y., Deng W. T., Zou G. Q., Hou H. S., Ji X. B., Coordin. Chem. Rev., 2024, 498, 215468
|
17 |
Fang M. Y., Wang B. Y., Qu X. L., Li S. R., Huang J. S., Li J. N., Lu S. Y., Zhou N., Chinese Chem. Lett., 2024, 35(1), 108423
|
18 |
Liu J. J., Geng Y. J., Li D. W., Yao H., Huo Z. P., Li Y. F., Zhang K., Zhu S. J., Wei H. T., Xu W. Q., Jiang J. L., Yang B., Adv. Mater., 2020, 32(17), 1906641
|
19 |
Liu J., Kong T. Y., Xiong H. M., Adv. Mater., 2022, 34(16), 2200152
|
20 |
Li S. H., He Y. X., Du Y. Q., Wei Z. P., Li Y., Cheng Q., Chin. J. Lumin., 2024, 45(9), 1478—1487
李胜慧, 何雨萱, 杜友全, 魏智鹏, 李玉, 程倩. 发光学报, 2024, 45(9), 1478—1487
|
21 |
Lin J. J., Huang W. Y., Zhang H. R., Zhang X. J., Liu Y. L., Li W., Lei B. F., J. Mater. Chem. C, 2024, 12(15), 5480—5487
|
22 |
Zhang Q., Li X. F., Xu Y. Z., Xu Z. X., Xu L. H., J. Hazard. Mater., 2025, 490, 137845
|
23 |
Tang L., Ai L., Song Z. Q., Sui L. Z., Yu J. K., Yang X., Song H. Q., Zhang B. W., Hu Y. S., Zhang Y. Q., Tian Y. X., Lu S. Y., Adv. Funct. Mater., 2023, 33(34), 2303363
|
24 |
Zhong W. L., Yang J. Y., Sci. Total Environ., 2024, 957, 177473
|
25 |
Li S., Li L., Tu H. Y., Zhang H., Silvester D. S., Banks C. E., Zou G. Q., Hou H. S., Ji X. B., Mater. Today, 2021, 51, 188—207
|
26 |
Kong Y. L., Cheng Q., He Y., Ge Y. L., Zhou J. G., Song G. W., Food Chem., 2020, 312, 126089
|
27 |
Li S. H., Su W., Wu H., Yuan T., Yuan C., Liu J., Deng G., Gao X. C., Chen Z. M., Bao Y. M., Yuan F. L., Zhou S. X., Tan H. W., Li Y. C., Li X. H., Fan L. Z., Zhu J., Chen A. T., Liu F. Y., Zhou Y., Li M., Zhai X. C., Zhou J. B., Nat. Biomed. Eng., 2020, 4(7), 704—716
|
28 |
He X., Han Y., Luo X. L., Yang W. X., Li C. H., Tang W. Z., Yue T. L., Li Z. H., Food Chem., 2020, 320, 126624
|
29 |
Fu F. M., Xu M. R., Liang Z. S., Huang S. R., Li H., Zhang H. R., Li W., Zheng M. T., Lei B. F., Chem. J. Chinese Universities, 2023, 44(2), 20220464
符芳媚, 徐梦如, 梁梓珊, 黄斯锐, 李晖, 张浩然, 李唯, 郑明涛, 雷炳富. 高等学校化学学报, 2023, 44(2), 20220464
|
30 |
Gao D., Zhang Y. S., Liu A. M., Zhu Y. D., Chen S. P., Wei D., Sun J., Guo Z. Z., Fan H. S., Chem. Eng. J., 2020, 388, 124199
|
31 |
Gu M. H., Zheng X. C., Li C., Zheng Z. X., Song G. C., Xu L., Chen L., Zhang D. Q., Nano Today, 2025, 62, 102675
|
32 |
Ding H., Yu S. B., Wei J. S., Xiong H. M., ACS Nano, 2016, 10, 484—491
|
33 |
Gao F. C., Fu Q., Ruan Y., Li C., Wang Y. D., Li H., Li J. C., Jiang Y. Y., Adv. Sci., 2025, 12(8), 2414895
|
34 |
Cao M. M., Liu Y. P., Zhu M. M., Xia J. F., Xuan T. T., Jiang D. Y., Zhou G. H., Li H. L., J. Alloy. Compd., 2021, 873, 159819
|
35 |
Wei J. Y., Lou Q., Zang J. H., Liu Z. Y., Ye Y. L., Shen C. L., Zhao W. B., Dong L., Shan C. X., Adv. Opt. Mater., 2020, 8(7), 1901938
|
36 |
Qu S. N., Zhou D., Li D., Ji W. Y., Jing P. T., Han D., Liu L., Zeng H. B., Shen D. Z., Adv. Mater., 2016, 28(18), 3516—3521
|
37 |
Dai R. Y., Chen X. P., Ouyang N., Hu Y. P., Chem. Eng. J., 2022, 431, 134172
|
38 |
Lin J. J., Huang X. M., Kou E. F., Cai W. X., Zhang H. R., Zhang X. J., Liu Y. L., Li W., Zheng Y. J., Lei B. F., Biosens. Bioelectron., 2023, 219, 114848
|
39 |
Zhai W. Y., Wang C. X., Yu P., Wang Y. X., Mao L. Q., Anal. Chem., 2014, 86(24), 12206—12213
|
40 |
Xu Y., Chen Y. H., Ding L., Chem. J. Chinese Universities, 2018, 39(7), 1420—1426
徐源, 陈艳华, 丁兰. 高等学校化学学报, 2018, 39(7), 1420—1426
|
/
〈 |
|
〉 |