
固态发光碳点的发光机理、 合成与应用研究进展
潘卓涵, 艾琳, 卢思宇
固态发光碳点的发光机理、 合成与应用研究进展
Research Progress on the Mechanism, Synthesis and Application of Solid-state Luminescent Carbon Dots
碳点(CDs)作为一种光学性能优异的零维碳纳米材料, 在光电器件及生物成像等领域得到了广泛的应用. 然而, 固态CDs由于聚集造成的共振能量转移和π-π堆积会导致固态发光猝灭, 极大阻碍了其在荧光粉或固态照明等方面的应用. 因此, 研究人员探索了多种获得固态发光CDs的方式. 本文综合评述了CDs固态发光的机理和现阶段常用的合成策略, 介绍了固态发光CDs最新的应用领域,最后指出了制备固态发光CDs面临的困难和挑战.
As a 0-dimensional carbon nanomaterial with excellent optical properties, carbon dots(CDs) has been widely used in optoelectronic devices, biological imaging and other fields. However, due to the resonance energy transfer and π-π accumulation caused by the aggregation of solid CDs, the solid emission quenching has greatly hindered its application as phosphors. So the researchers explored a variety of ways to obtain solid-state luminescent CDs. In this paper, the mechanism, classification and research progress of solid-state luminescence CDs are reviewed, and the latest application fields of solid-state luminescence CDs are introduced. Finally, the difficulties and future challenges in the preparation of solid-state luminescent CDs are presented.
Carbon dots / Solid state luminescence / Fluorescence / Afterglow
O632
1 |
Xu X., Ray R., Gu Y., Ploehn H. J., Gearheart L., Raker K., Scrivens W. A., J. Am. Chem. Soc., 2004, 126, 12736—12737
|
2 |
Wang B., Lu S., Matter, 2022, 5, 110—149
|
3 |
Wang B., Cai H., Waterhouse G. I. N., Qu X., Yang B., Lu S., Small. Sci., 2022, 2, 2200012
|
4 |
Shi Y., Su W., Yuan F., Yuan T., Song X., Han Y., Wei S., Zhang Y., Li Y., Li X., Fan L., Adv. Mater., 2023, 35, 2210699
|
5 |
Zhang Y., Song H., Wang L., Yu J., Wang B., Hu Y., Zang S., Yang B., Lu S., Angew. Chem. Int. Ed., 2021, 60, 25514—25521
|
6 |
Liu H., Zhong X., Pan Q., Zhang Y., Deng W., Zou G., Hou H., Ji X., Coord. Chem. Rev., 2024, 498, 215468
|
7 |
Sun Y., Zhou B., Lin Y., Wang W., Fernando K. A. S., Pathak P., Meziani M. J., Harruff B. A., Wang X., Wang H., Luo P. G., Yang H., Kose M. E., Chen B., Veca L. M., Xie S., J. Am. Chem. Soc., 2006, 128, 7756—7757
|
8 |
Zhou J., Booker C., Li R., Zhou X., Sham T., Sun X., Ding Z., J. Am. Chem. Soc., 2007, 129, 744—745
|
9 |
Yao X., Lewis R. E., Haynes C. L., Acc. Chem. Res., 2022, 55, 3312—3321
|
10 |
Wang H., Wang B., Bai J., Lu S., J. Mater. Chem. A., 2024, 12, 22417—22441
|
11 |
Wang B., Wei Z., Sui L., Yu J., Zhang B., Wang X., Feng S., Song H., Yong X., Tian Y., Yang B., Lu S., Light Sci. Appl., 2022, 11, 172
|
12 |
Shi L., Wang B., Lu S., Matter, 2023, 6, 728—760
|
13 |
Zhu S., Song Y., Zhao X., Shao J., Zhang J., Yang B., Nano Res., 2015, 8, 355—381
|
14 |
Wang Y., Li X., Zhao S., Wang B., Song X., Xiao J., Lan M., Coord. Chem. Rev., 2022, 470, 214703
|
15 |
Xian Y., Li K., Adv. Mater., 2022, 34, 2201031
|
16 |
Hu G., Wang Y., Zhang S., Ding H., Zhou Z., Wei J., Li X., Xiong H., Carbon, 2023, 203, 1—10
|
17 |
Liu Z., Zou H., Wang N., Yang T., Peng Z., Wang J., Li N., Huang C., Sci. Chi. Chem., 2018, 61, 490—496
|
18 |
Bao L., Liu C., Zhang Z., Pang D., Adv. Mater., 2015, 27, 1663—1667
|
19 |
Liu T., Yin G., Song Z., Yu J., Yong X., Zhang B., Ai L., Lu S., ACS Mater. Lett., 2023, 5, 846—853
|
20 |
Yang S., Sun J., Li X., Zhou W., Wang Z., He P., Ding G., Xie X., Kang Z., Jiang M., J. Mater. Chem. A., 2014, 2, 8660—8667
|
21 |
Zhao Q., Wang X., Song Q., Zang Z., Fan C., Li L., Yu X., Lu Z., Zhang X., J. Mater. Chem. C, 2023, 11, 14439—14447
|
22 |
Shan F., Zhang J., Liao C., Wang Z., Wang L., Chin. Chem. Lett., 2023, 34, 108107
|
23 |
He C., Xu P., Zhang X., Long W., Carbon, 2022, 186, 91—127
|
24 |
Li R., Tao S., Liu J., Han X., Xia C., Yang B., Small Struct., 2024, 6, 2400447
|
25 |
Zheng M., Jia H., Zhao B., Zhang C., Dang Q., Ma H., Xu K., Tan Z., Small, 2023, 19, 2206715
|
26 |
Zheng C., Tao S., Yang B., Small Struct., 2023, 4, 2200327
|
27 |
Tao S., Zhou C., Kang C., Zhu S., Feng T., Zhang S., Ding Z., Zheng C., Xia C., Yang B., Light Sci. Appl., 2022, 11, 56
|
28 |
Wang B., Sun Z., Yu J., Waterhouse G. I. N., Lu S., Yang B., SmartMat, 2022, 3, 337—348
|
29 |
Luo J., Xie Z., Lam J. W. Y., Cheng L., Chen H., Qiu C., Kwok H. S., Zhan X., Liu Y., Zhu D., Tang B. Z., Chem. Commu., 2001, 1740—1741
|
30 |
Wang X., Wan R., Tang Y., Sun S., Chen H., Li L., Chen J., Wei J., Chi Z., Li H., Coord. Chem. Rev., 2025, 531, 216520
|
31 |
Hu R., Leung N. L. C., Tang B., Chem. Soc. Rev., 2014, 43, 4494—4562
|
32 |
Wang H., Zhao E., Lam J. W. Y., Tang B., Mater. Today, 2015, 18, 365—377
|
33 |
Ding L., Jin X., Gao Y., Wu J., Ai T., Zhou H., Chen X., Zhang X., Chen W., Adv. Opt. Mater., 2023, 11, 2202349
|
34 |
Wang Y., Zhou S., Pan S., Sun X., Zhou J., Li H., Adv. Opt. Mater., 2024, 12, 2301486
|
35 |
Ding L., Jin X., Gao Y., Kang S., Bai H., Ma X., Ai T., Zhou H., Chen W., Adv. Sci., 2024, 11, 2409345
|
36 |
Ding L., Jin X., Gao Y., Kang S., Bai H., Ma X., Ai T., Zhou H., Chen W., Nano Res., 2024, 17, 5680—5687
|
37 |
Yang C., Hu J., Tan W., Si J., Hou X., Adv. Opt. Mater., 2025, 13, 2402638
|
38 |
Yang H., Liu Y., Guo Z., Lei B., Zhuang J., Zhang X., Liu Z., Hu C., Nat. Commun., 2019, 10, 1789
|
39 |
Wan Z., Li Y., Zhou Y., Peng D., Zhang X., Zhuang J., Lei B., Liu Y., Hu C., Adv. Funct. Mater., 2023, 33, 2207296
|
40 |
Ding H., Zhao R., Zhang Z., Yang J., Wang Z., Xiao L., Li X., He X., Xiong H., Chem. Eng. J., 2023, 476, 146405
|
41 |
Dos Santos J. M., Hall D., Basumatary B., Bryden M., Chen D., Choudhary P., Comerford T., Crovini E., Danos A., de J., Diesing S., Fatahi M., Griffin M., Gupta A. K., Hafeez H., Hämmerling L., Hanover E., Haug J., Heil T., Karthik D., Kumar S., Lee O., Li H., Lucas F., Mackenzie C. F. R., Mariko A., Matulaitis T., Millward F., Olivier Y., Qi Q., Samuel I. D. W., Sharma N., Si C., Spierling L., Sudhakar P., Sun D., Tankelevičiu̅tė E., Duarte Tonet M., Wang J., Wang T., Wu S., Xu Y., Zhang L., Zysman⁃Colman E., Chem. Rev., 2024, 124, 13736—14110
|
42 |
Wang Z., Jiang N., Liu M., Zhang R., Huang F., Chen D., Small, 2021, 17, 2104551
|
43 |
Wang L., Wang X., Zhao H., Adv. Funct. Mater., 2025, 10.1002/adfm.202423422
|
44 |
Wang L., Liu G., Wang M., Song Y., Jing Q., Zhao H., Small, 2024, 20, 2401812
|
45 |
Li J., Zheng S., Zhao X., Vomiero A., Gong X., Nano Energy, 2025, 134, 110514
|
46 |
Wang Z., Yan L., Hao Y., Zheng J., Yang Y., Liu X., Chin. Chem. Lett., 2024, 35, 109430
|
47 |
Zhao Y., He B., Liu E., Li J., Wang L., Chen S., Chen Y., Tan Z. A., Ng K. W., Wang S., Tang Z., Qu S., J. Phys. Chem. Lett., 2021, 12, 4530—4536
|
48 |
Xu B., Li J., Zhang J., Ning H., Fang X., Shen J., Zhou H., Jiang T., Gao Z., Meng X., Wang Z., Adv. Sci., 2023, 10, 2205788
|
49 |
Ding H., Xu J., Jiang L., Dong C., Meng Q., Rehman S. U., Wang J., Ge Z., Osipov V. Y., Bi H., Chin. Chem. Lett., 2021, 32, 3646—3651
|
50 |
Ai L., Song Z., Nie M., Yu J., Liu F., Song H., Zhang B., Waterhouse G. I. N., Lu S., Angew. Chem. Int. Ed., 2023, 62, 202217822
|
51 |
Shi H., Niu Z., Wang H., Ye W., Xi K., Huang X., Wang H., Liu Y., Lin H., Shi H., An Z., Chem. Sci., 2022, 13, 4406—4412
|
52 |
You M., Li C., Zhang Z., Zhang Y., Li W., Zhang X., Zhuang J., Hu C., Dong H., Liu Y., Lei B., Zheng M., Chem. Eng. J., 2025, 505, 159246
|
53 |
Luo Y., Jiang Q., Liu J., Huang F., Liao X., Zhuang J., Hu C., Zheng M., Lei B., Liu Y., He J., Chem. Eng. J., 2024, 500, 156781
|
54 |
Ding Z., Shen C., Han J., Zheng G., Ni Q., Song R., Liu K., Zang J., Dong L., Lou Q., Shan C. X., Small, 2023, 19, 2205916
|
55 |
Ai L., Xiang W., Xiao J., Liu H., Yu J., Zhang L., Wu X., Qu X., Lu S., Adv. Mater., 2024, 36, 2401220
|
56 |
Zhu J., Li C., Zhu Y., Hu J., Nan Y., Chen X., Liu K., Wang H., Shan C., Xu W., Lou Q., Nano Lett., 2024, 24, 13307—13314
|
57 |
Ahmed N., Abbas A., Qamar T. H., Hassan S. U., Jamali S. B., Deng L., J. Alloys Compd., 2025, 1013, 178586
|
58 |
Liu Z., Meng L., Jiang Y., Li C., Gu H., Zhao K., Zhang J., Meng H., Ren Y., J. Am. Chem. Soc., 2025, 147, 3650—3661
|
59 |
Zhang B., Li C., Wang H., Fang H., Feng R., Yu M., Li W., Chang Z., Bu X., Angew. Chem. Int. Ed., 2025, 10.1002/anie.202424593
|
60 |
Zhao Q., Fan C., Bu H., Gao J., Li L., Yu X., Yang X., Lu Z., Zhang X., Chem. Eng. J., 2024, 500, 156704
|
61 |
Park M., Kim H. S., Yoon H., Kim J., Lee S., Yoo S., Jeon S., Adv. Mater., 2020, 32, 2000936
|
62 |
Xin M., Chen X., Zhang L., Yang H., Guo D., Hu Y., Small, 2025, 21, 2407170
|
63 |
Sun X., He W., Liu B., J. Phys. Chem. C., 2022, 126, 3540—3548
|
64 |
Zhang Y., Liu Y., Ren X., Kang Y., Ding S., Lu S., Angew. Chem. Int. Ed., 2025, 64, e202421421
|
65 |
Liu Y., Cheng D., Wang B., Yang J., Hao Y., Tan J., Li Q., Qu S., Adv. Mater., 2024, 36, 2403775
|
66 |
Wang J., Zheng J., Yang Y., Liu X., Qiu J., Tian Y., Carbon, 2022, 190, 22—31
|
67 |
Wang B., Wang H., Zhang B., Hu Y., Lu S., Adv. Funct. Mater., 2024, 34, 2404437
|
68 |
Jiang K., Wang Y., Lin C., Zheng L., Du J., Zhuang Y., Xie R., Li Z., Lin H., Light Sci. Appl., 2022, 11, 80
|
69 |
Xu J., Liang Q., Li Z., Osipov V. Y., Lin Y., Ge B., Xu Q., Zhu J., Bi H., Adv. Mater., 2022, 34, 2200011
|
70 |
Weber W. H., Lambe J., Appl. Opt., 1976, 15, 2299—2300
|
71 |
Wu J., Li Y., Qin H., Gao Y., Yang B., Sheng J., Zhang X., Chem. Res. Chin.ese Universities, 2024, 40(1), 145—152
|
72 |
Kou X., Cong Y., Dong W., Li L., Mater. Des., 2024, 240, 112855
|
73 |
Zheng G., Shen C., Niu C., Lou Q., Jiang T., Li P., Shi X., Song R., Deng Y., Lv C., Liu K., Zang J., Cheng Z., Dong L., Shan C., Nat. Commun., 2024, 15, 2365
|
74 |
Song S., Liu K., Cao Q., Mao X., Zhao W., Wang Y., Liang Y., Zang J., Lou Q., Dong L., Shan C., Light Sci. Appl., 2022, 11, 146
|
75 |
Geng B., Hu J., Li Y., Feng S., Pan D., Feng L, Shen L., Nat. Commun., 2022, 13, 5735
|
/
〈 |
|
〉 |